

COTS Lens and Detector Characterization for Low Cost, Miniature SAL Seekers

Randal Allen, PhD John Volpi, CTO Steve Roemerman, CEO

(c) 2013 Lone Star - Unauthorized Reproduction Prohibited

WWW.LONE-STAR.COM

Abstract

- In the spirit of lower cost, weight, and volume, a simple aspheric refractor lens is characterized with a square detector for Semi-Active Laser (SAL) seeker applications.
- Experimental results show an angular error of 0.176° over an az/el range of ±6° and an error of 0.097° over an az/el range of ±4°. (detector linear region)
- In the final 10 seconds of a typical SAL engagement, the slant range is ~2500m, corresponding to a Target Location Error (TLE) of 7.7m (former) and 4.2m (latter).
- These initial results are very encouraging as the experimental research continues.

Motivation

- More demanding requirements
 - Yet same incremental design approach
 - Gimbals and additional optical elements
- Analog to digital
 - Yet unrealized improvement in system performance
- Problem compounded by multiple modes
- Previous (performance) requirements led to
 - Large volume, large mass
- Current (cost, size) requirements lead to
 - Small volume, small mass
- TAKE A SYSTEMS APPROACH INSTEAD!

Seeker Attributes	Previous	Desired
Volume (cm ³)	>10,000	<100
Weight (kg)	>50	<1
Outer mold line	Seeker-defined	Airframe-defined
Guidance loops	Simple, linear, analog	Complex, non-linear, discrete
Countermeasure	Limited	Robust
Flight time (sec)	>60	<10
Accuracy (collateral damage)	Limited	Critical
Performance vs Cost	Performance more important than cost	Cost more important than performance

Spot Focus

- Negative effect
 - Focused laser energy anywhere in QII
 - Relatively large control signal down and to the right to center the laser spot, which results in more demand on the control system

Spot Defocus

- Positive effect
 - Defocused laser energy spread into QI
 - Relatively small control signal down and slightly right required to center the laser spot, which results in **less** demand on the control system

Challenge the Assumption

- A large defocused spot is a traditional means to implement a seeker intended for pursuit guidance with "bang-bang" actuator systems.
- This experiment seeks to explore the performance of such a simple design with modern signal processing instead of expensive hardware components.
- A commonly held view among seeker designers has been to believe it was not possible to have a large region of linear angular response (needed for more than simple pursuit guidance) <u>unless there was a large,</u> <u>complex optical system</u>.
- WE SOUGHT TO CHALLENGE THAT ASSUMPTION!

Test Components

- Coherent lasers: green and IR
 - No chromatic aberration
- Collimated 1" diameter, parallel rays
- Edmund 27mm X 13FL aspheric lens
 - No spherical aberration
- Δ to investigate defocusing effects
 - 3mm increments from focal plane to 9mm in front of focal plane
- 20mm X 20mm square detector

Testing Procedure

- Rotate lens from -90° to +90° elevation in 15° increments
- Rotate lens from -30° to +30° azimuth in 1° increments
- Laser on, read data, laser off, write data, rotate

THE RIGHT ANSWER

Results (Green Laser)

Azimuth error (deg) vs Azimuth (deg)

Results (IR Laser)

- Switched from green to IR laser
- Data plotted at 0mm and 3mm only
- Maximum linear region is still ±25°
 - Same as the green laser

Saturation, linear region shortened

Results (IR Laser)

- Detailed analysis of azimuth errors with 3mm defocused data
- Azimuth ranges of ±6° and ±4°

Azimuth (deg) vs Azimuth error (deg)

Results (IR Laser)

 Using a COTS lens/square detector, accurate angular sensing is achieved over a linear region of the detector which is useful in many guidance applications

Azimuth Range (degrees)	Azimuth Error (degrees)
±6	0.176
±4	0.097

Conclusions

- This work shows a low cost COTS configuration yields a feasible light-weight, small-volume SAL seeker.
- With Patent Pending signal processing, the low cost seeker supports nearly any type of guidance law.

Conclusions

- A typical SAL end-game engagement begins about 10 seconds before impact with slant ranges ~2500m; even with no further guidance corrections, the results presented here would yield a target location error (TLE) of about 4m.
- These results challenge high performance and expensive seekers in production today.

Future Work

- Replace square detector with a quad cell detector
- Replace analog amps with log amps
- Other areas to explore
 - Sensitivity
 - Pulse characteristics
 - Dynamic range
 - Optical filtering bandwidth