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ABSTRACT 

 

Many popular clustering algorithms require a priori knowledge of the number of clusters, e.g., k-means and spectral 

clustering.  This requires you to already know some things about the data (which we often don't) or that you have to 

try to learn things about that data which becomes intractable for large, unstructured, and high-dimensional data.  

Nearly all popular clustering algorithms use distance as the metric – though not inherently bad all the time – it can 

introduce hyperparameters like distance thresholds that again, require a priori knowledge about the data. 

 

This paper introduces Correlated Histogram Clustering (CHC) which requires no a priori knowledge for the number 

of clusters and assumes nothing about the magnitude of values in any dimension.  Designed to handle large, 

unstructured, high-dimensional, and noisy data, CHC leverages probabilistic techniques to build density estimates 

rather than using distance metrics.  CHC uses the lowland modality algorithm to determine the modes of each 

dimension and then correlates the modes with points in the original dataset to form a cluster centroid.  This cluster 

centroid may then be used for training, thereby substantially reducing the amount of data needed for supervised 

learning. 

 

Sorting the significant few data values from the insignificant many in training data using CHC can be used to transform 

training syllabi by identifying which elements in a syllabus correlate with real skill attainment, and which elements 

do not accelerate skill attainment.  Additional benefits of applying CHC to large, unstructured, high-dimensional, 

noisy data include dimension reduction and an understanding of the modal nature of the data.  In one supervised 

learning classification application, twenty-seven features were reduced to only three, an 89% reduction of the dataset. 
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INTRODUCTION 

 

Unsupervised learning is a machine learning technique that aims to understand the underlying structure of data without 

any part of the data being a direct indicator of the class that it belongs to – that is, we have no “label” as a field in the 

dataset or stream data that we are performing unsupervised learning on. Unsupervised learning algorithms are 

overwhelmingly “clustering” algorithms where each instance of data is assigned to some cluster or group and the 

output is a labeled dataset. 

 

One can split two types of clustering algorithms, one where a priori knowledge of the number of clusters is given to 

the algorithm as a hyperparameter and the other where the algorithm derives this number of clusters. The advantages 

that the second has over the first should be obvious: we often do not know the number of clusters associated with a 

given dataset; in fact, we might be running such an algorithm to find out exactly this piece of information. Popular 

algorithms that require a priori knowledge of the number of clusters are K-Means, Spectral Clustering, and 

Agglomerative Clustering. Popular algorithms that do not require such knowledge are DBSCAN and BIRCH. 

 

What is needed is a simple clustering algorithm that does not require a priori knowledge of the number of clusters; 

one that can utilize statistics to identify cluster’s centroids rather than distance metrics that become arcane and problem 

specific. Correlated Histograms Clustering, CHC, does exactly this: it requires no a priori knowledge of the number 

of clusters, and it uses statistics that are understandable as its metric for determining cluster centroids rather than 

Euclidean distance (which an overwhelming majority of algorithms use). 

 

CORRELATED HISTOGRAMS CLUSTERING 

 

Overview 

 

This approach to clustering leverages statistics and correlates histogram data to determine the centroids of the clusters 

of data.  Rather than using distance as the metric like other algorithms, we look at the distribution along each dimension 

of the data, consider the modes of those distributions, and then reconcile the modes from each dimension with one 

another to determine the cluster centroids. By looking at one mode for some dimension, say X, we can find a nearest 

value, x, which corresponds to the point, (x, y, …) from the data set. We can use one of the other points, say y, to find 

the nearest peak in dimension Y that correlates to modes from different dimensions. 

 

Finding modes 

 

The crux of CHC is finding the modality of each dimension. This is a fairly difficult task especially when dealing with 

noisy data (real-world data often is). One could use any method to determine this value and then continue with the 

rest of CHC, in our example we use the Lowland Modality Algorithm (Akinshin, 2020) that makes use of Density 

Estimates. The goal is to use a density estimate that is accurate to the underlying distribution of our data, robust against 

noisy data, and represents the modality well. Many density estimates exist and could be candidates; this paper uses 

Quantile Respective Density Estimates (QRDE) using the Harrel-Davis method since it performs well on noisy data 

and differentiates modes that are close to one another (Akinshin, 2020).  

 

Modes in the lowland modality algorithm are defined as the highest histogram peak, M, between two other peaks, P1 

and P2, such that the proportion of the area between M and Pi just in the histogram bins and the total rectangular area 

between the two (where the width is the distance between bin edges and height is the height of Pi) is greater than 

some threshold value, called the sensitivity. This hyperparameter is set by the user and is passed along to the 
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Lowland algorithm – were one to use a different modality detection technique, there would be no sensitivity 

parameter (though there could be other hyperparameters associated with that other technique). 

 

For building the Harrel-Davis density estimate, or any density estimate / histogram for that matter, one must input the 

number of bins. There are many bin “rules of thumb” for histograms and density estimates like the square root rule, 

Sturges’ rule, Rice’s Rule, etc. These methods can produce acceptable results for the QRDE but, by default, this 

method optimizes the Shimizaki Scoring Function to get an optimal bin count (Shimizaki and Shinomoto, 2007).  

 

scor𝑒𝑛 =
(2 ∗ μ − 𝑆2)

(𝑚𝑎𝑥 −𝑚𝑖𝑛)2
 

 

Where µ is the mean number of elements in each bin for a histogram with n bins and S2 is the variance of the same. 

max and min are the max and min from the data set for which the density estimate is being constructed (note that these 

values will be the same for each estimate as the sample remains the same, only the bins and the values in each bin 

change). This method has advantage over the typical choices since it consider the statistics of the bin frequencies 

rather than just the number of data points. 

 

Correlating the Modes 

 

Once one has the modes for each dimension, they need only to find which modes correspond to which data points and 

then from those data points, which modes are correlated. To demonstrate, consider a 2-dimensional dataset of (x, y) 

values. Each mode of dataset X corresponds to some nearest value in dataset X which, in turn, corresponds to an (x, 

y) point. This corresponding y value then corresponds to some nearest mode of the Y dataset. 

 

 

 
Figure 1 – Correlation of Modes 

 

APPLICATIONS 

 

Consider that the data in Figure 2 was gathered from many training syllabi and plots the training metrics for trainees 

in each category of the syllabi. Note, of course, that this data set is trivial for one to pick the clusters out of and, 

furthermore, trivial to fit a curve to. We use it here for demonstrative purposes. 
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Figure 2 – Scatter of example data from training syllabus, skill attainment 

 

An insight that could be gleaned from such a dataset is what types of trainees does this syllabus produce? In figure 

2, we see that we form 3 distinct clusters based off the results of two training criteria. The centroids of these clusters 

would give one a very simple view into what metrics on which criteria correspond to the skill attainment that your 

training program wants. We will apply Correlated Histograms Clustering to this dataset to find exactly this. 

 

Below are two histograms representing this multimodal statistical model based on 10,000 pairs of points, (a, b) such 

that a in dataset A and b in dataset B. By examining the Figures 2, 3, and 4 one will surmise this is most likely a tri-

modal distribution. 

 
        Figure 3 – Tri-Modal Histogram for Data Set A                             Figure 4 – Tri-Modal Histogram for Data Set B 

 

 

Modes 

 

The construction of density estimates alongside an algorithm for interpreting that estimate is used to determine the 

modality of each data set. To get density estimates that are sensitive enough to determine the different modes in the 

dataset yet robust enough to not over or underestimate the number of modes, we use the Harrell-Davis method for 

QRDE and the Lowland Modality Algorithm. Below are the density estimate plots for datasets A and B. 
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                Figure 5 – QRDE for dataset A                                                                 Figure 6 – QRDE for dataset B 

 

Upon completion of identifying the modes, the tri-modal centroids for data set A are (1.654, 4.533, 8.280) and the tri-

modal centroids for data set B are (0.244, 0.441, 1.213). What is unobvious is the connection between the data. 

 

As is typically done, histograms are sorted as shown previously in Figure 2 and Figure 3. However, this sorting 

approach leads one to believe the order of A’s centroids are the same as those for B’s centroids, i.e., A(1.654) correlates 

with B(0.244), A(4.533) correlates with B(0.441), and A(8.280) correlates with B(1.213).  But in this case, they don’t 

go together as one may be led to believe. This is resolved through indexing. 

 

Indexing 

 

Recall correlating the modes according to Figure 1. If the data is indexed, then one simply looks for an index 

corresponding to a particular centroid (from A’s data set) and then uses that same index to locate the other centroid 

(from B’s data set).  For example, data set A has one of many indexes that match the value 4.533 (within a few values 

of the second decimal place), one of which happens to be the index 115. Looking at data set B, index 155 leads one to 

find a corresponding value of 0.4412. Recognizing 0.4412 is near 0.441, one concludes that one of the centroid clusters 

(A, B) is the pair (4.533, 0.441). It turns out that this just happens the be the same as the second elements in the 

histogram order for A and B. 

 

Repeating the methodology, data set A has one of many indexes that match the value 8.280 (within a few values of 

the second decimal place), one of which happens to be the index 566. Looking at data set B, index 566 leads one to 

find a corresponding value of 0.240, which just happens to coincide with the centroid. Thus, one concludes that another 

of the centroid clusters (A, B) is the pair (8.280, 0.244). The astute reader will recognize this is not in order of the 

histogram data. The third centroid value of A corresponds to the first centroid values of B. 

 

One can repeat the methodology for the last pair (or deduce by elimination) that is it must be (1.654, 1.213). Again, 

this is not in the order of the histogram data. The first centroid value of A corresponds to the third centroid values of 

B. 

 

The aggregated set of three correlated centroids are (1.654, 1.213), (4.533, 0.441), and (8.280, 0.244). This indicates 

to the practitioner that there are, effectively, 3 outcomes of the training syllabus and we can see the values of the 

training metrics that correspond to each of those outcomes. 

 

RESULTS 

 

To evaluate the performance of correlated histograms, we will look at other well-known algorithms on the cluster 

datasets from sklearn, a popular machine learning toolkit (scikit-learn, 2022). Labels are not available for these 

datasets (for most of them they are not really needed), these are mostly to demonstrate how each of the algorithms 

behave for different scenarios. 
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Figure 7 – Cluster Performance from Sklearn on the datasets (top to bottom respectively) noisy circles, noisy 

moons, varied, aniso, blobs, and unstructured. 

 

Below is Correlated Histograms applied to a selection of the above datasets that embody the pros and cons of the 

method (unstructured, at the bottom of Figure 7, is left out). 

 

 
Figure 8 – Correlated Histogram clustering applied to blobs dataset. Number of QRDE bins = 45, 43 for x, y 

respectively; sensitivity = .5. 

 

Figure 8 shows Correlated histograms identifying centroids near (-5, -10), (7, 0), and (7, 10). These are all near the 

center of the gaussian blobs. 
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Figure 9 – Correlated Histograms applied to varied. 

Number of QRDE bins = 42, 32 for x, y respectively,  

sensitivity = .5. 

 

Figure 10 – Correlated Histograms applied to varied. 

Number of QRDE bins = 42, 32 for x, y respectively,  

sensitivity = .9. 

In Figures 9 and 10, we see how Correlated Histograms responds to noisy datasets and how it can be adjusted using 

the sensitivity parameter to respond differently. In Figure 9, CHC identifies only two cluster centroids: one near (-

8.5, -5) and another near (2, .5). In Figure 10, with sensitivity set to .9, the large, noisy blob in the center of the 

image is identified as being a cluster with centroid near (-5, 0). 

 

 
 

Figure 11 – CHC applied to the noisy-moons dataset with 

sensitivity = .90 and bin count for QRDE set to 100 for 

both x and y.  

 

In Figure 11, CHC identifies 4 centroids for each moon shape. Note that in both clusters, the centroids are at the tips 

and vertex of the paraboloid. For the top moon shape, CHC identifies a centroid near (-1, 0.2), 2 centroids near (0, 

1), and another near (1, 0.2). For the bottom moon shape, CHC identifies a centroid near (0, 0.2), a centroid near (1, 

-0.4), and two centroids near (2, 0.3). 
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Figure 12 – CHC applied to the noisy-circles dataset 

with sensitivity = .5.  

 

Figure 13 – CHC applied to the noisy-circles dataset 

with sensitivity = .9.

In Figure 12, CHC identifies a cluster that does not lie on the visually recognizable clusters. In Figure 13, with 

sensitivity set higher than in figure 12, it identifies many clusters, all of which lie on the visually recognizable 

clusters. Specifically, 6 different centroids around the outer circle and 6 more around the inner circle. 

 

 

Figure 14 – CHC applied to the aniso dataset with 

sensitivity = .50. 

 

 Figure 15 – CHC applied to the aniso dataset with 

sensitivity set to .90.  

In Figure 14, CHC identifies only two clusters – one near (-3, 1) where the true centroid of the left most gaussian 

would be and another near (1, 1) that is outside of any cluster. Figure 15 identifies many cluster centroids: 3 near (-3, 

1), 3 near (-3, 3) and then one near (1, -1). All the identified cluster centroids in figure 15 lie inside of the actual 

clusters and are near the true centroids) 

  



Page 9 of 10 

 

2022 Paper No. 22184 Page 9 of 10 

CONCLUSIONS 

 

Correlated Histograms Clustering is easily able to identify clusters in Figure 8 and datasets like it expect the same 

results. Moreover, CHC is effective at finding cluster centroids amongst noisy datasets since it looks at the modality 

of the data rather than looking at distance metrics and relying on thresholds relative to Euclidean distance between 

points. This is illustrated well in Figure 9 where amongst the noise, CHC identifies only two clusters. Compare this 

to DBSCAN, a popular choice for clustering, in Figure 7 (row 3, column 7) and see that it fails to discern noise from 

the cluster on the right.  

 

CHC starts to underperform on datasets whose underlying statistics in each dimension do not necessarily identify the 

shape of distinct clusters – note Figures 12, 13, and 15. These results are expected from Correlated Histograms 

Clustering; that is, one can look at the statistics along each dimension of the data and make sense of the decisions the 

algorithm made by considering where peaks would lie and intersect with other dimensions. Methods for using 

histogram data in such scenarios is discussed in the future work sections. In some cases, setting the sensitivity higher 

can give a better idea of the where centroids in the data lie. Figure 16 has all the centroids “covered” – a practitioner 

would need further analysis on the relationship of centroids identified to find those that are close to one another and 

correspond to the same cluster. 

 

FUTURE WORK 

 

There are two areas where CHC can be improved: its ability to handle datasets where the clusters of the data are not 

obvious to the statistics of each dimension of data and its tendency to overestimate the number of clusters, 

specifically, outputting many clusters next to one another when the sensitivity is high. 

 

Dealing with “Odd” Shaped Data 

CHC effectively projects the data on the x and y axis, or in the case of n-dimensional datasets, projects it onto the 

orthogonal basis vectors and considers the frequency / density estimates on those lines. Perhaps there are other 

projection techniques where the histogram or density estimate of a dataset onto some other basis vector or some 

function yields information about the cluster. 

 

Replacing QRDE 

The Harrel-Davis Quantile Respective Density Estimate, for certain datasets, can be overly sensitive to false modes 

and the sensitivity parameter in the lowland modality can be hard to tune to account for this. The use of a traditional 

histogram seems like a reasonable candidate as they are less likely to have such jagged peaks as the density estimate. 

Even better could be the use of the Adaptive Histogram (Akinshin, 2020) that claims to express modality in histograms 

better without using a density estimate. 

 

Other Modality Techniques 

One of the difficult parts of the algorithm is finding the modality of a dataset. One can crudely do it by looks at just 

peaks in some histogram but a histogram that accurately depicts the modality is required. A potential solution is the 

m-value technique that sums up the differentials of frequencies for a histogram (Gregg, 2015). 
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