
 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2019 Paper No. 19149 Page 1 of 11 

Interpretable Network Architectures for Machine Learning 
(Patent Pending) 

 

 
Randal Allen 

Lone Star Analysis 

Orlando, FL 

rallen@lone-star.com 

 

 
ABSTRACT 

 

With limited success, artificial neural networks bring several disadvantages.  These shortcomings are related to architectural 

selection (e.g., number of neurons, number of layers) which are dependent on the number of inputs and outputs and the 

complexity of the input-output relationship.  Also, training methods may require additional neurons and layers, increasing the 

size of the network, and may lead to underfitting or overfitting, rendering the network useless beyond the data used for training 

and testing.  The design process becomes an academic exercise in numerical investigation resulting in an untrusted “black box” 

where the designer has no influence over what is being learned.  In the end, because of the depth of complexity, it’s impossible 

to understand how conclusions were reached. 

 

A system is needed with an architecture where the designer has control over what is being learned and thus provides inherent 

elucidation.  This paper presents and discusses such a system architecture comprising a set of mathematical functions and logic 

gates lending transparency and explanation to applications based on artificial neural networks.  A relatively simple example 

shows how the system architecture replaces the regression form of supervised learning to determine the aerodynamic rolling 

moment coefficient given aileron deflections, using much less data than required by traditional system identification methods.  

The paper concludes by discussing the implications this system architecture has on the other forms of machine and deep learning 

(classification and clustering), predictive and prescriptive analytics, and due to the inclusion of logic gates, quantum 

computation. 
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MOTIVATION 

 

There are several sources motivating interpretable network architectures.  An MIT Technology Review on Intelligent 

Machines states, the U.S. Military wants its autonomous machines to explain themselves.  The latest machine learning 

techniques are essentially black boxes.  DARPA is funding efforts to open them up (Knight, W., 2017).  DARPA also 

announced its Artificial Intelligence Exploration (AIE) program, a key component of the agency’s broader artificial 

intelligence (AI) investment strategy aimed at ensuring the United States maintains an advantage in this critical and 

rapidly accelerating technology area (DARPA, 2018).  In February, President Trump enacted the “American AI 

Initiative,” identifying AI as a priority for government research and development.  The next day, the DoD released its 

own AI strategy, positioning its newly created Joint Artificial Intelligence Center (JAIC) at the forefront of its efforts 

(Lamberth, M., 2019).  The proposed system architecture removes the opaqueness of machine learning black boxes 

so practitioners can easily interpret the results, see if they correspond with intuition, and fully explain how the 

transparent system works. 

 
BACKGROUND 

 

Kaplan and Haenlein (2018) define Artificial Intelligence (AI) as “a system’s ability to correctly interpret external 

data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation.”  

AI dates to the mid-1950s with times of promise followed by disappointment and lack of funding.  However, AI has 

seen a resurgence due to increased computational power, the ability to manipulate large amounts of data, and an influx 

of commercial research funding. 

 

 
Figure 1: Artificial Intelligence, Machine Learning, and Deep Learning 

 

For the purposes of this paper, assume machine learning is a subset of AI (Figure 1), with applications to image, 

speech, and voice recognition, and natural language processing.  In business applications, machine learning may be 

referred to in the context of predictive analytics.  Unlike computer programs which execute a set of instructions, 

machine learning is based on models which learn from patterns in the input data.  A major criticism of machine 

learning models is that they are black boxes without explanation for their reasoning. 

 

There are three types of machine learning which depend on how the data is being manipulated.  The first type is 

supervised learning where a model is trained on known input and output data to predict future outputs.  There are two 

subsets to supervised learning: regression techniques for continuous response prediction and classification techniques 

for discrete response prediction.  The second type is unsupervised learning which uses clustering to identify patterns 

in the input data only.  There are two subsets to unsupervised learning: hard clustering where each data point belongs 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2019 Paper No. 19149 Page 3 of 11 

to only one cluster and soft clustering where each data point can belong to more than one cluster.  Finally, the third 

type is reinforcement learning where a model is trained on successive iterations of decision-making, where rewards 

are accumulated based on the results of the decisions.  A machine learning practitioner will recognize there are many 

methods to solve these problems, each having their own set of implement requirements.  Figure 2 shows a sample of 

the machine (supervised/unsupervised) learning state of the art. 

 

Regression Classification Soft Clustering Hard Clustering 

Ensemble methods Decision trees Fuzzy-C means Hierarchical clustering 

Gaussian process Discriminant analysis Gaussian mixture K-means 

General linear model K-nearest neighbor  K-medoids 

Linear regression Logistic regression  Self-organizing maps 

Nonlinear regression naïve Bayes   

Regression tree Neural nets   

Support vector machine Support vector machine   

Figure 2: Machine Learning Methods 

 

Current focus is on deep learning, a subset of machine learning (see Figure 1).  Applications include face, voice, and 

speech recognition and text translation which employ the classification form of supervised learning.  Deep learning 

gets its name from the multitude of cascaded artificial neural networks.  Figure 3 shows a typical artificial neural 

network architecture used in machine learning.  In its most basic form, the artificial neural network has an input layer, 

a hidden layer, and an output layer. 

 

 
Figure 3: Artificial Neural Network 

 

For deep learning applications, the more layers, the deeper the learning.  Figure 4 shows a simplistic artificial neural 

network architecture used in deep learning where additional hidden layers have been added providing depth.  In 

practice, deep learning networks may have tens of hidden layers. 

 

 
Figure 4: Artificial Neural Network for Deep Learning 

 

As an example of the burden on the model designer, consider the application of supervised machine learning 

(classification) for object recognition or detection.  The designer must manually select the relevant features to extract 

from the data, decide which classification method to use to train the model, and tune hyperparameters associated with 
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fitting the data to the model.  The designer does this for various combinations of features, classifiers, and 

hyperparameters until the best results are obtained. 

 

In the case of deep learning, the manual step of selecting the relevant features to extract from the data is automated.  

However, to accomplish this, thousands of images are required for training and testing.  Also, the designer is still 

responsible for determining the features.  In the end, even highly experienced data scientists can’t tell whether a 

method will work without trying it.  Selection depends on the size and type of the data, the insights sought, and how 

the results will be used. 

 

While artificial neural networks are the basis for artificial intelligence, machine learning, and deep learning, there are 

problems associated with this technology.  Significant issues include lack of transparency, depth of deep learning, 

under-fitting or over-fitting data, cleaning the data, and hidden-layer weight selection. 

 

Because the artificial neural network was modeled (somewhat) after the human brain, it is difficult to see the 

connection between the inputs and outputs which leads to a lack of transparency.  The designer is often unable to 

explain why one architecture is used over another.  This unknown opaqueness leaves the user wondering if the 

architecture can be trusted.  For the designer, architectural selection becomes an exercise in numerical investigation.  

Architectural choices naturally include the number of inputs and outputs but becomes artificial when hidden layers 

and corresponding nodes are added.  The number of hidden layers and the number of nodes comprise the depth of 

deep learning and is arbitrary.  If you happen upon an architecture that appears to work, congratulations, but good 

luck explaining why to the user.  Furthermore, architecture selection is based on the number of hidden layers and 

nodes: too few may lead to under-fitting, whereas too many may lead to over-fitting.  In both cases, the overall 

performance and predictive capability may be compromised.  As an example, (Zhou, 2019) discusses how an artificial 

neural network may be pruned (from 50% all the way up to 99.5%) without impacting the model’s performance.  

Clearly, there is a lot of unnecessary overhead, regarding the architecture and the data.  This candid discussion leaves 

a few questions about the formulation of the problem/model that need to be answered. 

 

• How were the original weights (that were subsequently pruned) selected? 

• Why could the model be pruned up to 99.5% without impacting its performance? 

• If the pruned neurons didn’t matter, why were they there in the first place? 

• What does the pruned network represent? 

 

The current answer to all four questions is, “We don’t know.”  With this, we can empathize with the U.S. Military 

wanting its autonomous machines to explain themselves. 

 

Other problems with artificial neural networks are the need to clean the data and, seemingly arbitrary, weight selection.  

Why should some data (outliers) be omitted from the training or test set?  Maybe there is a plausible reason for the 

outlier’s existence and it should be kept because it represents reality.  For instance, maybe the outlier represents what 

is known as a black swan – Nassim Taleb’s metaphor for an improbable event with colossal consequences.  The outlier 

should not be omitted simply to make the architecture more robust.  Also, who is to say which weight factor should 

be placed on a hidden layer or set of nodes?  Data cleansing and parameter tuning may lead to architectural fragility. 

 

Disadvantages of Current Systems 

 

Upon surveying the prior art associated with machine learning in general, machine learning practitioners will 

recognize the disadvantages of current methods.  Refer to Figure 2 for a sampling of the state of the art, where each 

method has its own set of implementation requirements.  In the case of supervised classification, the designer is 

required to manually select features, choose the classifier method, and tune the hyperparameters. 

 

Deep learning brings with it, its own set of demands.  Enormous computing power through high performance graphics 

processing units (GPUs) is needed to process the data, lots of data.  The number of data points required is on the order 

of 105 to 106.  Also, the data must be numerically tagged.  Plus, it takes a long time to train a model.  In the end, 

because of the depth of complexity, it’s impossible to understand how conclusions were reached. 
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The mathematical theory associated with artificial neural networks is the Universal Approximation Theorem (UAT)1 

– which states a network, with a single hidden layer, can approximate a continuous function.  Some practitioners rely 

on this too heavily and seem to ignore the assumptions associated with this approach.  For example, as seen in Figure 

4, a relatively simple deep learning model has more than a single hidden layer.  By implementing a deep learning 

model with multiple hidden layers, the UAT assumption is grossly violated.  Also, for practical applications serving 

state of the art technologies, problem complexity surely increases.  Once a model has been built, the architect may not 

be entirely sure the mathematical functions are continuous – another violation of UAT assumptions.  While increasing 

the number of neurons may improve the functional approximation, any improvement is certainly offset by the curse 

of dimensionality.  In other words, while additional neurons (for a single hidden layer) may improve the functional 

approximation, by increasing the number of hidden layers, the number of neurons increases accordingly.  Other version 

of the UAT come with their own limitations.  In one version, linear outputs are assumed.  In another version, convex 

continuous functions are assumed.  Finally, the UAT itself says nothing about the artificial neural network’s ability to 

learn!  The artificial neural network architecture supporting machine/deep learning is supposedly inspired by the 

biologic nervous system.  The model learns through a process called back propagation which is an iterative gradient 

method to reduce the error between the input and output data.  But humans don’t back-propagate when learning, so 

the analogy is weak in that regard.  That aside, more significant issues are its black box nature and the designer having 

no influence over what is being learned. 

 

Therefore, a system is needed with an architecture where the designer has control over what is being learned and thus 

provides inherent elucidation.  This architecture must be innovative and avoid the pitfalls of artificial neural networks 

with their arbitrary hidden layers, iterative feature and method selection, and hyperparameter tuning.  The system must 

not require enormous computing power, it should quickly train and run on a laptop.  Depending on the application, 

data tagging, while necessary, should be held to a minimum.  Lastly, the system must not require thousands of 

(cleaned) data points. 

 

TECHNICAL APPROACH 

 

Where the current state of the art creates a connection between two sets of data with a multitude of nodes, layers, and 

arbitrarily simple functions, the proposed system architecture instead inserts a curated set of lucid mathematical 

functions between the two sets of data.  This is a fundamental difference in that mathematical nonlinearities, and/or 

nonconvexities, and/or discontinuities can more quickly be approximated to reveal relationships between the two sets 

of data. 

 

 
Figure 5: System Architecture 

 

Referring to the system architecture of Figure 5, signal (2) is sent to the mathematical model yielding output signal 

(3).  The error signal (4), which is the difference between the feedforward signal (1) and the output signal (3), is 

minimized.  The mathematical model may be generic or specific, depending on the application.  If available, a 

practitioner with area expertise should incorporate a priori knowledge into the design of the mathematical model.  For 

example, if the problem is associated with mechanical vibration, then the mathematical model should include Fourier 

sine and cosine terms.  Minimization of the error signal (4) is achieved through optimization techniques.  Through this 

process, signal (3) is forced to match signal (1) by adjusting parameters associated with the mathematical model. 

 

This approach is unique in that it serves as a unifying system architecture among the many varied specialized sciences, 

including machine/deep learning.  For example, in supervised learning (classification), output is related to input.  

Referring again to Figure 5, one manifestation of the system architecture solves this type of problem by connecting 

known input data to signal (2) and known output data to signal (1).  In supervised learning (regression), output is 

                                                           
1 https://en.wikipedia.org/wiki/Universal_approximation_theorem  

https://en.wikipedia.org/wiki/Universal_approximation_theorem
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related to output.  Another manifestation of the system architecture solves this type of problem by connecting known 

output to both signal (1) and signal (2).  For both supervised learning cases, parameters associated with the 

mathematical model are varied until the computed result matches the known result.  In the case of unsupervised 

learning (clustering), another manifestation of the system architecture solves this type of problem by connecting the 

known input to both signal (1) and signal (2).  By minimizing the error, signal (3) will match signal (1) and thus, 

characterize the input data based on the mathematical model.  While these manifestations leverage the same system 

architecture, only the assignment of signal (1), signal (2), and the mathematical model architecture differ. 

 

Details 

 

To understand how the system operates, consider a manifestation of the system architecture where the designer has 

no a priori knowledge about the relationships of the data.  In this case, assume the mathematical model contains 

generic mathematical functions such as a second-order polynomial, sine and cosine terms, an exponential function, 

and a logarithmic function, 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 +⋯+ 𝒃𝒔 𝒔𝒊𝒏(𝒏𝒙) + 𝒃𝒄 𝒄𝒐𝒔(𝒏𝒙) + 𝒄 𝒆𝒙𝒑(𝒏𝒙) + 𝒅 𝒍𝒏( 𝒏𝒙).  (Other 

manifestations may involve different mathematical functions and operations, including classical (Boolean) or quantum 

logic gates.  To guard against such discontinuities, an optimization algorithm is employed which avoids partial 

derivatives and their associated numerical instabilities.) 

 

[Referring to I/ITSEC abstract 19109, entitled “Adaptive Nonconvex Optimization for AI and Machine Learning,” a 

system of methods which reaps the benefits of both grid search and random search, without their corresponding 

limitations, is uniquely combined with a method of multipliers to produce an approach to solving general nonconvex 

optimization problems.  At its core, independent random variables adapt themselves to produce a finer search for an 

extremum.  Because the system is gradient-free, the architecture allows for logic gates with implications for machine 

learning and quantum computing.] 

 

The coefficients 𝒂𝟎, 𝒂𝟏, 𝒂𝟐, 𝒃𝒔, 𝒃𝒄, 𝒄, 𝒅 may be random variables between 0 and 1 and weighted such that they sum to 

1.  Because the system architecture is designed to minimize the differential error between some computed quantity 

and a known quantity, the coefficients are changed to place different weights on each of the mathematical functions.  

Since the coefficients are random variables, their adaptation (over multiple Monte Carlo iterations) is probabilistic.  

All the statistics are available such that the designer can explore any set of coefficients for interesting (rare condition) 

cases.  Nominally, however, the designer selects the median coefficient values which define a transparent, 

interpretable, and explainable relationship between the known input and the computed output.  The system architecture 

is self-defined because the coefficients are determined empirically.  There is no need for the designer to perform a 

numerical investigation of trial and error as in the case for artificial neural nets.  The system architecture is transparent, 

interpretable, and explainable because the designer can show the mathematical function that relates known data to 

computed data. 

 

EXAMPLES 

 

The following manifestations are just a few examples and are discussed with intentions to demonstrate the flexibility 

of the system architecture as applicable to the problem space of current technologies, e.g., cryptography, information 

theory, and quantum computation/information.  Practitioners of these arts will understand and appreciate their content. 

 

System Identification 

 

As a practical example, consider the process of system identification as applied to the estimation of the rolling moment 

aerodynamic parameter, 𝑪𝒍.  System identification is the process of determining an adequate mathematical model, 

usually containing differential equations, with unknown parameters which are determined indirectly from measured 

data (Jategaonkar, 2006).  System identification is accomplished by a variety of methods: output error, filter error, 

equation error, recursive parameter estimation, and artificial neural networks.  For this example, the proposed system 

architecture will be compared with the artificial neural net method.  To estimate the rolling moment aerodynamic 

parameter, the artificial neural net method uses 5 independent variables (one of which is aileron deflection, 𝜹𝒂) to 

simultaneously determine 3 dependent variables (one of which is the rolling moment aerodynamic parameter).  After 

a preliminary exercise in numerical investigation (input/output scaling, initial network weights, number of hidden 

nodes, learning rate, momentum parameter, and slope factors of the sigmoidal activation functions) convergence is 

achieved after 2000 iterations, in approximately 30 seconds.  The result is a complex, opaque, uninterpretable, 
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unexplainable relationship between the inputs and outputs.  It’s important to note, if there are any changes to the inputs 

or outputs, the model must be retrained. 

 

Figure 6 refers to an architecture for system identification problems using the proposed system architecture.  Let the 

aileron deflection be the known input corresponding to signal 2 of Figure 5.  Let the roll moment aerodynamic 

parameter be the known output corresponding to signal 1 of Figure 5.  Assuming the aerodynamic relationship between 

input and output is unknown, a generic mathematical model is used 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 + 𝒂𝒆 𝒆𝒙𝒑( 𝒏𝒙) + 𝒂𝒍 𝒍𝒏( 𝒙) +

𝒂𝒔 𝒔𝒊𝒏(𝒙) + 𝒂𝒄 𝒄𝒐𝒔(𝒙).  The reason for a generic mathematical model is to demonstrate it’s possible to describe the 

relationship between aileron deflection and rolling moment aerodynamic parameter without having a priori 

knowledge regarding aerodynamics.  Of course, an aerodynamics practitioner may implement a model describing the 

mathematics from aileron input to rolling moment aerodynamic parameter output.  Minimizing the difference between 

the computed output and the known output (signal 4 of Figure 5) determines the coefficients of the mathematical 

functions.  The coefficients describe the model and are used to explain the relationship between the input (aileron 

deflection) and output (roll moment aerodynamic parameter).  Rather than using an input/output ratio of 5:3, a 1:1 

ratio is used with the proposed system architecture.  By using the proposed system architecture (instead of using 

multiple inputs/multiple outputs in the context of a complicated artificial neural net) much less data is required to 

determine the relationship between the two data sets (aileron deflection and rolling moment aerodynamic parameter).  

Also, the results are achieved in 200 iterations – an order of magnitude less than required by the artificial neural net 

approach – in approximately 20 seconds.  Additional resultant data are shown in Table1 and Table 2. 

 

Table 1: Relative Error – Proposed System vs Neural Net 

  Proposed System Neural Net 

Iterations Time (s) Relative Error Time (s) Relative Error 

200 16 10% 4 20% 

500 40 3% 8 20% 

1000 80 2% 15 20% 

2000 160 1% 30 3% 

 

As seen in Table 1, the proposed system takes longer to run, but this is offset by lower relative error.  For 2000 artificial 

neural net iterations, it takes 30 seconds to run with 3% relative error.  For the same relative error, the proposed system 

takes 10 seconds longer to run, but only required 500 iterations.  This may appear as trading execution time for 

iterations.  However, what is not included is the time for the practitioner to endure the numerical exercise in 

determining that, in this very particular case, 2000 iterations of an artificial neural net with 8 hidden layer nodes yield 

a decent solution.  In fact, Table 2 demonstrates the varying results when determining the number of iterations and 

number of hidden layer nodes.  The obvious anomaly is seen by examining the nonlinear behavior between node 

number and relative error within a set of iterations. 

 

Table 2: Relative Error – Neural Net Iterations 

  Neural Net Neural Net 

Nodes Iterations Relative Error Iterations Relative Error 

4 200 57% 2000 20% 

8 200 20% 2000 3% 

12 200 32% 2000 8% 

16 200 441% 2000 2% 

 

Referring to Table 1, another advantage of the proposed system is the ability to get a quick estimate.  In this example, 

the practitioner can run 200 iterations in 16 seconds and obtain half as much relative error (10%) when compared with 

the artificial neural net approach.  Keep in mind, this doesn’t include the artificial neural net practitioner’s time spent 

performing numerical investigations. 
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Furthermore, the artificial neural net approach required the time series data to be in chronological order.  The proposed 

system architecture is agnostic to any timestamp.  The only requirement is to maintain the correlation between the two 

sets of data.  The mathematical model is relatively simple, transparent, interpretable, and explainable.  Because of 

these attributes, the proposed system architecture is much more reliable for flight safety certification.  The 

mathematical model can be subsequently exercised to explore extreme cases, e.g., letting variables go to zero and 

letting variables approach infinity.  Hence increasing confidence model deployment. 

 

 

Figure 6: A Generic Mathematical Model for System Identification 

 

To conclude this subsection, it is recognized that classical system identification has a counterpart in quantum process 

tomography.  Therefore, the proposed system may have applications to understanding and controlling noisy quantum 

systems. 

 

Cryptography 

 

Using the proposed system architecture to emulate cryptography, a sinusoidal signal, composed of a summation of 

three individual frequency components (𝑐𝑜𝑠𝜃, 𝑐𝑜𝑠2𝜃, 𝑠𝑖𝑛4𝜃) is used as an input to a mathematical model of a discrete 

Fourier transform.  By minimizing the difference between the computed signal (signal 3 of Figure 5) and the 

“unknown” reference signal (signal 1 of Figure 5), the “unknown” reference signal is decomposed to determine its 

frequency content (Figure 7). 

 

 

 

 
Figure 7: A Mathematical Model for Fourier Transforms 

 

Continuing with another cryptography example, the proposed system architecture is used to perform the task of order 

finding (Figure 8).  Efficient order-finding can be used to break RSA public cryptosystems.  In this problem, the 

integer value of 𝑟 is sought which satisfies the expression 𝑎𝑟 ≡ 1(𝑚𝑜𝑑 𝑁) where 𝑚𝑜𝑑𝑁 means modulus 𝑁.  In this 

example embodiment, the problem has been formulated as 𝑎𝑟(𝑚𝑜𝑑𝑁) − 1, where the difference has been minimized 

over different integer values of 𝑟.  Again, the same architectural approach is applied to a completely different problem 

type.  Regarding Figure 5, the integer 1 corresponds to signal 1 and the 𝑎𝑟(𝑚𝑜𝑑𝑁) portion corresponds to signal 2.  

Additional examples may be extended from Fourier transforms and cryptography to their quantum counterparts, i.e., 

quantum Fourier transforms and quantum cryptography. 
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Figure 8: A Mathematical Model for Order Finding 

 

Logic Gates 

 

To demonstrate the flexibility of the proposed system architecture, the next example emphasizes its ability to handle 

mathematical models containing discontinuities.  Consider Figure 9 which is a classical (Boolean) circuit with three 

inputs A, B, and C.  The output of the classical (Boolean) circuit corresponds to signal 3 of Figure 5, while the input 

(with value 1) corresponds to signal 1 of Figure 5. 

 

 

 

Figure 9: A Boolean Circuit for Classical Logic 

 

Minimizing the difference yields five of the truth table values with entries -1, while maximizing the difference yields 

the other three values of the truth table with entries 1, see Table 1. 

 

Table 1: Truth Table 

 
 

This is significant because as some mathematical models include an increasing number of logic gates (e.g., decision-

making) the complexity of the model architecture may render the problem intractable.  Yet, the proposed system 

architecture allows the practitioner to simply exercise the system to yield the corresponding truth table leading to the 

discovery of cause-effect relationships.  This example of a classical Boolean circuit, within an acyclic directed graph, 

may be extended to quantum computation/information by implementation of quantum circuits which form the basis 

for implementing various computations.  While physicists and mathematicians view quantum computation as 

hypothetical experiments, computer scientists view quantum computation as games where players, typically “Alice” 

and “Bob” optimize their performance in various abstractions.  Applications include the minimization of bits for 

quantum error correction, and GHZ (Greenberger, Horne, and Zeilinger) and CHSH (Clauser, Horne, Shimony, and 

Holt) games. 

 

Self-Organized Systems 

 

Another example of the proposed system architecture emulates information and self-organized complex systems.  The 

human brain and behavior are shown to exhibit features of pattern-forming, dynamical systems, including multi-

stability, abrupt phase changes, crises, and intermittency.  How human beings perceive, intend, learn, control, and 

A B C DIFF

0 0 0 -1

0 0 1 1

0 1 0 -1

0 1 1 -1

1 0 0 1

1 0 1 1

1 1 0 -1

1 1 1 -1



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2019 Paper No. 19149 Page 10 of 11 

coordinate complex behaviors is understood through dynamic systems.  Here, a dynamic system is modeled by a 

power series (∑ 𝑎𝑛𝑥
𝑛

𝑛 ) as a solution to an ordinary differential equation.  A second-order harmonic oscillator (mass, 

spring, damper system) is used to create a set of input-output relations.  Using the proposed system architecture, the 

(spring and damping) coefficients are determined through the power series implementation of the differential equation 

(Figure 10).  Again, this demonstrates the flexibility of this unifying system architecture which is adaptable to a wide 

range of technological applications. 

 

 
Figure 10: A mathematical model for power series 

 

 

Real-Time Systems 

 

To conclude this section, consider an example for real-time systems.  As practitioners are aware, real-time 

requirements for aerospace guidance, navigation, and control (GNC) processes are different than real-time 

requirements for e-commerce transactions.  However, in either case, the proposed system architecture may be 

augmented such that known constraints (if any) could be built into the objective function a priori.  Also, by selecting 

an appropriate resolution, the system may be configured to execute in a deterministic time frame.  This single approach 

for multifunctional systems may be used for industrial applications.  These multifunctional systems must manage 

diverse objectives, multiple resources, and numerous constraints.  A factory might use several types of power 

(pneumatic, electrical, hydraulic), several types of labor skills, many different raw materials, all while making multiple 

products.  A production optimization system based on the Industrial Internet of Things (IIoT) can collect data from 

thousands of sensors.  A system with the computational efficiency to support real-time monitoring and control is a 

valuable advance in optimization techniques. 

 

SUMMARY/CONCLUSION 

 

Practitioners of various arts have complete control over what is being learned.  If the practitioner has a priori 

knowledge, then mathematical or logical representations may be included accordingly.  The adaptive discovery of the 

proposed system architecture finds the best configuration of terms contributing to a scientific equation (based on a 

combination of elementary mathematical functions) which matches real-world observations.  Because of mathematical 

transparency, practitioners can easily interpret the results to see if they correspond with intuition and explain how the 

system works. 

 

Back-propagation methods are replaced by an adaptive system for solving nonlinear, nonconvex, and discontinuous 

problems.  Paired with a rich set of options for mathematical functions, the unrestricted system architecture can be 

optimized for a training set of nearly any size.  In the case of multiple inputs/outputs, prior knowledge of the 

hyperspace is not needed.  The mathematical architecture is independent of the input/output complexity.  Inputs and 

outputs can be discrete, continuous, deterministic, random, or any combination thereof. 

 

Regarding data, normalization may be performed to avoid domination by any one input.  Otherwise, there is no need 

to manipulate the data.  Furthermore, much less data is needed in the case of the system identification architecture 

compared with the artificial neural net approach.  This demonstrates a reduction in the need for massive training sets. 

 

Also, there is no need for enormous computing power.  Every manifestation discussed in the examples section runs 

on a laptop personal computer. 

 

Other benefits include, but aren’t limited to: 

• Minimized risk associated with data security legislation 

• Reduced reliance on large, clean data sets which otherwise limit practical applications 
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• Reduced footprint for real-time applications dominating networks, servers, and GPUs 

 

It is the author’s hope that the proposed system architecture may contribute to training, simulation, and/or education 

in the context of the American AI Initiative.  It is certainly a different and perhaps, unique approach to solving today’s 

technological problems. 
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