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ABSTRACT 

 

The Intelligent Predictor is a node available to the user of Analytics OS (AOS) where a filter/prediction method is 

selected and applied to sensor data to provide predictive analytics and subsequently prescriptive analytics.  This paper 

discusses the research associated with different filtering and predicting methods and their development.  Details of 

each method are provided in the Methods section of the paper.  The data used and the criteria applied to rank the 

performance of each method appear in the Analysis section where the results are presented.  Finally, our recommended 

methods and suggestions for future work are provided in the Conclusion section. 
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INTRODUCTION 

 

The Intelligent Predictor1 capability of Analytics OS (AOS) allows the user to implement different sensor data filtering 

and prediction methods.  Our intention is to contrast and compare these methods.  However, since the filtering 

algorithm is consistent for all methods, the methods differ only in their predictive steps. 

 

AOS is a software platform that provides predictive and prescriptive analytics at the edge of the network or in 

centralized locations based on the business outcomes the customer is looking to achieve.  In particular, it is the 

Intelligent Predictor node which furnishes the predictive analytics.  A single Intelligent Predictor node automatically 

provides predictions at 10%, 50%, and 90% confidence, collectively called a “prediction interval.”  The points in a 

prediction interval may be interpreted as “there is an X% chance the data will cross the threshold on or before the 

predicted date.”  Individual points within the prediction interval are only provided when the prediction is within the 

notification time window. 

 

In addition to the prediction interval, the Intelligent Predictor Node also provides a “Gross Estimation” metric. This 

metric represents a rough estimate of when the threshold might be crossed. Unlike the prediction interval, the 

Intelligent Predictor will always output a Gross Estimation metric, assuming the Intelligent Predictor has enough 

information.  

 

This paper serves as a summary of the research that went into developing the Intelligent Predictor node.  In the next 

section, we introduce each filter and prediction method, including those which weren’t worthy of full analysis.  In the 

following section, we discuss the data used for analysis, the criteria by which the methods were rated, and the results 

of our findings.  Finally, we conclude with recommendations about when a particular prediction method might be 

selected and future work to be considered. 

 

METHODS 

 

For each method under consideration, the sensor data is first filtered and then subsequently used for prediction 

purposes.  In this section, we describe the filtering approach followed by a description of each prediction method. 

 

Filtering 

 

The sensor data filter is common across each prediction method, i.e. a one-state Kalman filter (Kalman 1960) with the 

option to select the sensitivity level: low, medium, or high.  For example, if the data is slowly varying from a 

temperature sensor (thermistor), the user might select a high level of sensitivity to track the signal (see Figure 1 – left 

panel).  As an alternate example, if the data is rapidly changing from a vibration sensor (accelerometer), the user might 

select a low level of sensitivity to filter the data and extract the signal from the noise (see Figure 1 – right panel). 

 

                                                           
1 For more information about the Intelligent Predictor, please see the AOS Release Notes v5.5 available from Lone Star Analysis upon request. 



  
Figure 1 – Temperature data with high sensitivity tracking and vibration data with low sensitivity filtering 

 

Prediction 

 

The prediction methods under consideration are: (1) Linear Regression, (2) Error Trend Seasonality (ETS), and (3) a 

two-state Kalman filter.  Other methods that were considered, but ultimately abandoned were a peak detector, the 

extended Kalman filter (EKF), and the unscented Kalman filter (UKF). 

 

For Linear Regression, outputs of the one-state Kalman filtered sensor data are used to find the best linear fit over 

multiple time periods.  To obtain useful estimates, G.E.P. Box (Box et al. 2016) recommends using at least fifty 

observations.  Therefore, we begin by using fifty Kalman filter samples to evaluate the performance of linear 

regression.  We also include 100, 200, and 400 samples for an extended analysis of this method. 

 

If the one-state Kalman filtered sensor data has trend, seasonal, and random components, then exponential smoothing 

extracts the trend and seasonality.  ETS is a weighted average of past observations with weights decaying 

exponentially.  While there are different variations on this theme, we elected to implement the additive algorithm, that 

is, the trend component and the seasonal component are simply added to the error signal.  Incidentally, one of the 

variants is the multiplicative algorithm.  However, both the additive and multiplicative algorithms give the same point 

forecasts but different prediction intervals. 

 

Rounding out the prediction methods is the two-state Kalman filter.  In this case, the raw sensor data is not filtered by 

the one-state Kalman filter.  Instead, we implement the two-state to filter and use the second state – which is the 

derivative or slope of the sensor data – to form the direction by which predictions are forecasted from the first state. 

 

Regarding methods which were initially considered, but subsequently discarded, we have (1) a peak detector, (2) the 

Extended Kalman Filter (EKF), and (3) the Unscented Kalman Filter (UKF).  We have more to say about why we 

discarded these methods in the Analysis section of the paper. 

 

In the Conclusions section, we discuss the Particle Filter as a candidate for future consideration.  We like its 

implementation as a filter because it makes no assumptions about the process.  In fact, we know the Kalman filter is 

the optimal linear filter.  But, if the process is nonlinear, then the particle filter is superior.  While the UKF is a balance 

between the Kalman filter and the particle filter, we still have no knowledge, a priori, of possible nonlinearities.  

Another attractive feature of the particle filter is its estimation error converges to zero as the number of particles 

increases.  Of course, as in any engineering situation, there’s a trade-off.  In this case it is the computational effort.  

Still, with the speed of modern computing, this is less of an impact. 

 

 

 



ANALYSIS 

 

In this section, we discuss the data used to evaluate each filter/prediction method, the criteria by which the performance 

of each filter/prediction was measured, and present the results of our findings. 

 

Data 

 

Data used to perform the analysis was gathered from a live, operating Horizontal Pump System (HPS).  We tested the 

filters/predictors using a total of eighteen data sets: eight occurred during a twenty-day period in November of 2015, 

and the remaining ten occurred during a two-month period in May and June of 2016.  For all data sets, measurements 

were taken every hour so that one forecasting period represents one hour of elapsed time. The data measures various 

components of the HPS including bearing and winding temperatures in the motor, pump vibration and suction 

pressure, overall system health, and other attributes of the system. 

 

Each data set includes some amount of noise which may vary with time.  The different sources of data provide a 

mixture of different characteristics such as seasonality, trends, impulses, and randomness.  For example, temperature 

data was affected by the day/night (diurnal) cycle which creates a (short) seasonal characteristic.  Vibration data, 

however, was not affected by the day/night cycle and is not seasonal, but does contain a significant portion of 

randomness. 

 

Criteria 

 

Three main criteria were used to test and compare the different prediction strategies.  An optimal prediction strategy 

will minimize all three criteria.  These criteria include false alarms, missed predictions, and impulse recovery. 

 

False Alarms 

 

When a prediction strategy produces a forecast, which exceeds the threshold value, it will send an alarm.  A false 

alarm occurs if the observed measurements do not exceed that threshold value within the forecasted timespan.  False 

alarms are misleading and may cause complacency.  Therefore, a prediction strategy should produce as few false 

alarms as possible. 

 

Missed Predictions 

 

A missed prediction occurs when an observed measurement exceeds the threshold value, but no forecast was produced 

which predicted the exception.  Any forecast which predicted the exception within twelve periods leading up to the 

exception was not considered because such a short forecast is not useful.  A prediction strategy should produce as few 

missed predictions as possible. 

 

Impulse Recovery 

 

A large impulse in measured data will negatively affect predictions for some number of periods after the impulse while 

the prediction method adapts to, or forgets the impulse.  This criterion measures the average number of periods a 

prediction strategy requires to return to the pre-impulse level, within a 5% margin. 

 

The impulse recovery test uses computer-generated input data.  The input data begins with 1000 samples from a 

random variable, followed by a large impulse which lasts for ten periods, and ends with samples from the original 

random variable until a 95% recovery is achieved.  This test is repeated thirty times, each time using a different 

standard deviation for the random variable, and a different impulse magnitude. 

 

 

 



Results 

 

False Alarm Results 

 

Analysis of the false alarm criteria used eight unique forecast lengths ranging from 24 to 1440 periods, or one to sixty 

days.  For all prediction strategies, the frequency of false alarms dropped as the forecast length increased.  By 840 

periods (thirty-five days) the Two-State Kalman, ETS, Linear (50 History), and Linear (100 History) strategies, each 

with a Low filter sensitivity setting, all achieved 99% or higher average alarm correctness across all eighteen data sets. 

 

Table 1 – False Alarms Performance Summary 
Prediction Strategy Filter 

Sensitivity 

Forecast Length 

Periods (Days) 

Average % False Alarms 

Low Noise High Noise 

ETS High 24 (1) 26.96% 6.01% 

Two-State Kalman High 24 (1) 55.59% 69.84% 

Linear (50 History) High 24 (1) 26.81% 27.07% 

Linear (100 History) High 24 (1) 7.74% 6.22% 

Linear (200 History) High 24 (1) 1.62% 28.48% 

Linear (400 History) High 24 (1) 3.51% 9.30% 

ETS Medium 24 (1) 27.19% 22.71% 

Two-State Kalman Medium 24 (1) 57.86% 48.55% 

Linear (50 History) Medium 24 (1) 29.52% 27.63% 

Linear (100 History) Medium 24 (1) 6.69% 6.22% 

Linear (200 History) Medium 24 (1) 1.47% 29.47% 

Linear (400 History) Medium 24 (1) 3.45% 8.92% 

ETS Low 24 (1) 5.64% 7.49% 

Two-State Kalman Low 24 (1) 17.28% 22.00% 

Linear (50 History) Low 24 (1) 14.56% 30.64% 

Linear (100 History) Low 24 (1) 3.40% 27.00% 

Linear (200 History) Low 24 (1) 7.11% 48.33% 

Linear (400 History) Low 24 (1) 4.93% 9.81% 

ETS High 336 (14) 8.10% 8.37% 

Two-State Kalman High 336 (14) 11.94% 22.85% 

Linear (50 History) High 336 (14) 9.35% 3.68% 

Linear (100 History) High 336 (14) 5.59% 6.94% 

Linear (200 History) High 336 (14) 10.02% 18.36% 

Linear (400 History) High 336 (14) 12.39% 12.05% 

ETS Medium 336 (14) 8.71% 2.90% 

Two-State Kalman Medium 336 (14) 12.45% 20.40% 

Linear (50 History) Medium 336 (14) 10.02% 3.93% 

Linear (100 History) Medium 336 (14) 7.99% 7.26% 

Linear (200 History) Medium 336 (14) 28.15% 19.38% 

Linear (400 History) Medium 336 (14) 30.03% 12.16% 

ETS Low 336 (14) 9.06% 3.01% 

Two-State Kalman Low 336 (14) 13.53% 4.73% 

Linear (50 History) Low 336 (14) 7.70% 7.32% 

Linear (100 History) Low 336 (14) 5.55% 10.14% 

Linear (200 History) Low 336 (14) 10.61% 21.08% 

Linear (400 History) Low 336 (14) 14.29% 32.50% 

 

The results in Table 1 compare the average false alarm percentage of each prediction strategy with different 

combinations of filter sensitivity and forecast length settings.  Forecast lengths of 24 periods (one day) and 336 periods 

(fourteen days) are included which represent short and long forecast length performance, respectively.  Note: fourteen 

days is the baseline for prescriptive analytics and one day is used as a sanity check to be sure filters and predictions 

are behaving intuitively.  The Average % False Alarms columns show the probability that an alarm produced by the 

corresponding prediction/filter sensitivity combination was a false alarm.  The Low Noise column represents results 

from data sets which contain a low amount of noise, such as temperature data.  The High Noise column shows results 

from data sets which contain a high amount of noise, such as vibration data.  For this metric, a lower percentage is 

better.  The best performing prediction strategy/filter combination has been highlighted for each forecast length. 

 



Tests on data with low noise favor prediction strategies which are less reactive such as Linear (200 History) and Linear 

(400 History).  High noise tests favor prediction strategies which are more reactive such as ETS, Linear (50 History), 

and Linear (100 History).  Although the Two-State Kalman strategy is reactive, it might be considered too reactive in 

scenarios which have high noise or a Medium or High filter sensitivity.  This highly reactive behavior causes the Two-

State Kalman to produce many more alarms than other strategies. 

 

Note that the performance of the Two-State Kalman strategy is affected more by the filter sensitivity setting than are 

the other prediction strategies.  Linear regression acts as an additional smoothing step in the Linear (50/100/200/400 

History) strategies, and the ETS strategy employs additional smoothing techniques which also act as an additional 

filter.  The Two-State Kalman strategy does not further smooth the data, so the filter sensitivity setting has a larger 

impact on the performance of this strategy. 

 

Missed Predictions Results 

 

Analysis of the missed predictions criteria used the same eight forecast lengths as were used to analyze the false alarms 

criteria.  Again, these forecast lengths ranged from 24 to 1440 periods, or one to sixty days.  By only 540 periods, the 

ETS and Two-State Kalman strategies achieved 94% or higher average prediction correctness across all data sets.  By 

840 periods, every prediction/filter sensitivity combination achieved 92% or higher average prediction correctness 

across all data sets. 

 

Table 2 – Missed Predictions Performance Summary 
Prediction Strategy Filter 

Sensitivity 

Forecast Length 

Periods (Days) 

Average % Missed Predictions 

Low Noise High Noise 

ETS High 24 (1) 18.92% 43.19% 

Two-State Kalman High 24 (1) 0.00% 0.00% 

Linear (50 History) High 24 (1) 35.74% 54.34% 

Linear (100 History) High 24 (1) 47.61% 62.67% 

Linear (200 History) High 24 (1) 63.73% 73.40% 

Linear (400 History) High 24 (1) 81.66% 86.32% 

ETS Medium 24 (1) 16.67% 42.94% 

Two-State Kalman Medium 24 (1) 0.00% 0.00% 

Linear (50 History) Medium 24 (1) 33.81% 54.81% 

Linear (100 History) Medium 24 (1) 47.61% 62.67% 

Linear (200 History) Medium 24 (1) 62.32% 73.40% 

Linear (400 History) Medium 24 (1) 81.66% 86.32% 

ETS Low 24 (1) 61.17% 62.05% 

Two-State Kalman Low 24 (1) 24.96% 13.89% 

Linear (50 History) Low 24 (1) 38.98% 46.30% 

Linear (100 History) Low 24 (1) 51.77% 60.37% 

Linear (200 History) Low 24 (1) 75.16% 73.40% 

Linear (400 History) Low 24 (1) 81.88% 86.32% 

ETS High 336 (14) 0.00% 5.56% 

Two-State Kalman High 336 (14) 0.00% 0.00% 

Linear (50 History) High 336 (14) 0.00% 2.78% 

Linear (100 History) High 336 (14) 0.00% 5.56% 

Linear (200 History) High 336 (14) 33.33% 5.56% 

Linear (400 History) High 336 (14) 37.93% 30.79% 

ETS Medium 336 (14) 0.00% 2.78% 

Two-State Kalman Medium 336 (14) 0.00% 0.00% 

Linear (50 History) Medium 336 (14) 0.00% 2.78% 

Linear (100 History) Medium 336 (14) 0.00% 5.56% 

Linear (200 History) Medium 336 (14) 16.67% 5.56% 

Linear (400 History) Medium 336 (14) 21.26% 30.79% 

ETS Low 336 (14) 0.00% 5.56% 

Two-State Kalman Low 336 (14) 0.00% 0.00% 

Linear (50 History) Low 336 (14) 0.00% 2.78% 

Linear (100 History) Low 336 (14) 0.00% 2.78% 

Linear (200 History) Low 336 (14) 33.33% 5.56% 

Linear (400 History) Low 336 (14) 37.45% 42.86% 



 

Table 2 compares each filter/prediction strategiy over 24 periods (one day) and 336 periods (fourteen days) in detail. 

 

The Average % Missed Predictions columns show the probability that, given the data has crossed a critical threshold, 

the corresponding prediction/filter sensitivity combination failed to predict the event. A lower percentage indicates 

better performance for this metric.  The best performing strategy/filter sensitivity combination has been highlighted 

in each forecast length.  Many prediction strategy/filter sensitivity combinations performed perfectly in some cases.  

This does not guarantee that these prediction strategies will perform perfectly in similar scenarios. 

 

In each forecast length scenario, the Linear (50 History) with a medium sensitivity filter outperforms the other Linear 

prediction/filter sensitivity combinations.  In general, the Linear (200 History) and Linear (400 History) strategies 

performed notably worse than other strategies.  This is because the longer history size attenuates any quick changes 

in the data’s trend.  The linear regression strategies cannot adapt quickly enough to make a valid prediction. 

 

In each scenario (low noise/high noise), the Two-State Kalman strategy with a High or Medium filter sensitivity 

correctly predicted every event.  This is likely because the higher filter sensitivities remove a smaller amount of noise.  

The resulting filtered data will still contain enough noise to cause rapid changes, which results in the Two-State 

Kalman prediction strategy forecasting an imminent critical event. 

 

The properties of the Linear (400 History) strategy which resulted in favorable performance during the false alarms 

test simultaneously resulted in poor performance in the missed predictions test.  Additionally, the properties of the 

Two-State Kalman/High sensitivity combination which resulted in poor performance in the false alarms test 

simultaneously resulted in favorable performance in the missed predictions test.  For these reasons, it is important to 

consider both criteria together when evaluating a filter/prediction sensitivity combination. 

 

Impulse Recovery Results 

 

The results in Table 4 show the average recovery time for each prediction strategy over thirty impulse recovery tests.  

The Prediction Strategy and Filter Sensitivity columns describe which combination of prediction and filter strategy 

were used, respectively.  The Periods (95% Recovery) column describes how many periods after an impulse each 

prediction/filter combination required before reaching a 95% recovery.  Lower values are considered better, and the 

lowest valued row in each Filter Sensitivity group has been highlighted. 

 

Table 4 – Impulse Recovery Performance Summary 

 

Prediction Strategy Filter Sensitivity Periods (95% Recovery)

ETS High 52

Two-State Kalman High 26

Linear (50 History) High 51

Linear (100 History) High 64

Linear (200 History) High 119

Linear (400 History) High 248

ETS Medium 51

Two-State Kalman Medium 43

Linear (50 History) Medium 70

Linear (100 History) Medium 65

Linear (200 History) Medium 119

Linear (400 History) Medium 248

ETS Low 67

Two-State Kalman Low 61

Linear (50 History) Low 134

Linear (100 History) Low 128

Linear (200 History) Low 127

Linear (400 History) Low 246



 

In these tests, the Two-State Kalman Filter strategy performs best for each filter sensitivity setting, and recovers faster 

with lower sensitivity settings.  This is because a prediction strategy can only begin recovery once the data it receives 

returns to pre-impulse values.  The lower sensitivity settings produce smoother output and so they will take more time 

to return to the pre-impulse levels. 

 

The ETS, Linear (200 History), and Linear (400 History) prediction strategies appear to recover at around the same 

rate regardless of the filter sensitivity.  In the case of ETS, this is most likely a result of the prediction strategy further 

smoothing the data after the Kalman filter.  The data was smoothed enough from the prediction strategy that any 

smoothing the Kalman filter provided had little effect on the final recovery time. 

 

Similarly, the Linear (200 History) and Linear (400 History) have such large history sizes that linear regression created 

a smoothing effect similar to ETS.  This would also explain why the Linear (50 History) and Linear (100 History) 

were affected more by the filter sensitivity. 

 

Omissions 

 

The objective of implementing the peak detector was to take the linear regression algorithm and improve its 

performance with seasonal (regular cycle lengths) and cyclic (irregular cycle lengths) data.  The peak detector 

performs well when the data in a monotonically increasing sinusoid.  However, the peak detector performs poorly in 

almost every other scenario – it either creates very steep-sloped predictions or stops changing its prediction for large 

periods of time which makes it appear to be broken.  Another issue is that the peak detector has more parameters than 

our other strategies making the setup cumbersome.  Furthermore, the results are difficult to interpret. 

 

The objective of implementing the Extended Kalman Filter (EKF) and/or the Unscented Kalman Filter (UKF) was to 

improve upon the linear Kalman filter to handle nonlinearities.  However, we were led to discard both methods because 

we don’t know the process a priori, therefore we have no information by which to model any nonlinearities. 

 

One method still under consideration is the particle filter.  The reader will find a discussion of this in the Future Work 

portion of the following section. 

 

Finally, we would be remiss to omit any discussion of artificial neural nets (ANNs).  One reason we don’t consider 

ANNs is because we believe ANNs to be a black box (e.g. hidden layers).  At Lone Star Analysis, our philosophy is 

to present customers with a glass box so they can see exactly what is going on inside our tools.  Technical reasons to 

dismiss ANNs are because the guidance for architectural implementation varies too widely.  For example, too few 

neurons lead to under-fitting; whereas too many neurons lead to over-fitting.  The best approach is to try different 

architectures with a different number of layers and different numbers of neurons to discover which works best for 

each individual case by numerical investigation.  Alas, there is no generalization to this approach. 

 

CONCLUSIONS 

 

Recommendations 

 

As mentioned previously, it is important to consider all criteria when evaluating a filter/prediction (and sensitivity) 

combination. 

 

We’ve shown that Linear Regression techniques perform well when it is desired to omit false alarms from low noise 

(temperature-like) data, while results were mixed between Linear Regression and ETS in the case of high noise 

(vibration-like) data. 

 

To avoid missed predictions, the Two-State Kalman filter performed the best over short period predictions and 

performed the best along with other strategies, i.e., ETS and Linear Regression, over long period (14-day) predictions 



 

To recover quickly from sensor impulse signals, the Two-State Kalman filter performed the best overall. 

 

These results appear to be independent of filter sensitivity setting (low, medium, or high).  Therefore, in general, the 

user could use Linear regression to avoid false alarms, and use the Two-State Kalman Filter to avoid missed 

predictions and to recover from sensor impulses quickly. 

 

Future Work 

 

Earlier in this paper, we mentioned the particle filter.  We have implemented it and tested it with favorable filtering 

qualities.  We will investigate replacing the one-state Kalman filter with the particle filter for sensor data filtering.  

This would alleviate the need for the user to tune the Kalman for low, medium, or high sensitivity.  Additionally, there 

is a possibility of using the particle filter for prediction.  This is an area of research and development for us. 
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