First-Order Conceptual Design for Turbojet Missiles and Guided Bombs

Seth Spears
Lone Star Analysis

2022 SciTech Forum, January 3-7

Copyright © by Seth Spears, Lone Star Analysis
Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Agenda

- > Introduction
- Tactical Missile Design Spreadsheet
- Updates and New Baselines
- Use Case Example
- Verification and Validation

Introduction

- TMD spreadsheet follows the same process as this proven conceptual design flowchart
- Desired range, Mach number, and maneuverability determine the baseline
- Expedites design convergence

Tactical Missile Design Spreedsheet

Design Inputs		2021 TACT						ears, and Jack Zent	ner	
Primary Range / Flyout C	alculations		2010.0000.00	, rearray raise	.,	, /	ю, осин ор	ouro, una ouon zona		
The following input section:		calculate a 'final	range'							
Missile (Characteristics		ROCKET	RAMJET	TURBOJET	GUIDED BOMB				
Description	Variable Name	Value	Default Value	Default Value	Default Value	Default Value	Units	Additonal Inforn	nation	
Launch Mach Number	М	8.00E-01	0.8	0.8	0	0.8		DO NOT USE M=0.0		
Launch Altitude	h	0	20000	40000	0	20000	ft			
lissile Weight at Launch	W _{Launch}	500	500	2230	1525	2059	lbm			
Veight of Cruise/Sustain Propellant	W _{Cruise}	48.2	48.2	476	108.5	0	lbm			
Veight of Boost Propellant	W _{Boost}	84.8	84.8	449	143	0	lbm			- Us
Weight of Booster Ejectables	W _{ejectables}	0	0	42.5	217	0	lbm			- Ur
Missile Average Center of Gravity	X _{CG}	76.2	76.2	82.5	76.4	62.7	inches	Zero defaults to length/2		cons
Flight termination Mach Number	M	1.5	1.5	2	0.5	0.5		DO NOT USE M=0.0		
Acceleration of Gravity	g	32.2	32.2	32.2	32.2	32.2	ft/sec ²			
Air Specific heat ratio	γ	1.4	1.4	1.4	1.4	1.4				
ir Density	ρ	1.17E-03					slugs/ft^3	Turn rate	7459	- Ma
Speed of Sound	а	1026.5					ft/sec	Time	41.81	- All
Air Temperature	T _{Ambient}	438.5					Rankine	Range	14.51	disc - No
Atmospheric Pressure	P _{Ambient}	6.11					psi	Obj Func:	0.096738114	mus
Air Density at Sea Level	ρ _{sea-level}	2.38E-03					slugs/ft^3			- No
Speed of Sound at Sea Level	a _{sea-level}	1.12E+03					ft/sec	Turn rate constraint	4000	Stru - Of
									-13.64822491	pag
Required Volume of Missile		6268 1056	62 in/3							spre

Tactical Missile Design Spreedsheet

1	Aerodynamics												
2		INPUTS					OUTPUTS						
3	Description	Variable	Value	Units		Description	Variable	Value	Units				
4	Missile Body Input	L				Body Geometry Parameters	111	1000					
5	Nose Length	aero_len_nose	11.60	inches		Nose Fineness Ratio	aero_fn	0.859259		Note that th	e Tail is itera	ivolv cizod II	t ic cizo
6	Missile Length	aero_length	182.70	inches		Body Fineness Ratio	aero_fbody	13.5			ero static ma		
7	Missile Major Dia (2a)	aero 2a	13.50	inches		Reference Area	aero ref area	143.139	inches ²	Mach numb	er", with the		
8	Missile Minor Dia (2b)	aero 2b	13.50	inches		Nose Hemispherical Dia.	aero hemi dia	0		leading edg	e position.		
9	Nose Bluntness	aero nose blunt	0%			Hemi Nose Ref Area	aero hemi ref	0.000	inches ²	If the Basel	ine wing/tail p	arameters are	a
10	Missile Center of Gravity	aero cg	76.4	inches		Semimajor Axis	aero a	6.75	inches	preferred, p	lace the num	per 1 in the	
11	Nozzle Exit Area	aero exit area	37.22	inches ²		Semiminor Axis	aero b	6.75	inches	correspond	ing row 13 ce	ll, e.g., for the	Turboj
12	Air Density	aero density	1.17E-03	slugs/ft ³		Missile Diameter	aero ref dia	13.5	inches	Rocket	Ramjet	Turbojet	GB
13	Speed of Sound	aero vsound	1026.5	ft/sec		Wing Geometry Paramaters						1	
14	gamma	aero gamma	1.40			Wing Incident Angle (rad)	aero wing inc rad	0.00	rad				
	Missile Wing Input	GOIO_GGIIIIIG				Wing Semi-span (b/2)	aero wing span	11.25	inches	16.1	i, i	11.25	
	Number of Wings (0,1,2)	aero num wings	2			Wing Root Chord	aero wing root	29.30	inches	19.4	1	29.3	
17	Wing Incident Angle	aero wing angle	0	deg	8	Wing Tip Chord	aero wing tip	15.00	inches	3.4		15	
18	Wing Planform Area	aero wing area	498.24	inches ²	8	Wing Sweep	aero wing sweep	0.79	rad	0.7854		0.7854	
19	Thickness-to-Chord, max	aero t over c	6.0%			Wing Mean Aero Chord	aero mean chord	22.92	inches	13.3		22.92	
20	Wing LE Thickness Angle	aero_le_thick_angle	45	deg		Wing Outboard (Y) Cp (from root)	aero_wing_y_cp	5.02	inches	6.20		5.02	
21	Wing Aspect Ratio	aero_aspect_ratio	1.02			Station of Wing MAC LE	aero_wing_mac_le	79.48	inches	60.8		78.1	
22	Station of Wing leading edge	aero_wing_le	73.1	inches		Tail Geometry Parameters							
23	Wing taper ratio	aero_wing_taper	0.512		8	Tail Semi-Span (b/2)	aero_tail_span	11.25	inches	12	11.5	11.25	12
24	Missile Tail Input				8	Tail Root Chord	aero_tail_root	11.60	inches	18.5	16.5	11.60	19
25	Number of Tail Wings (0,1,2)	aero_tail_wings	2		8	Tail Tip Chord	aero_tail_tip	6.00	inches	0	11.5	6.00	9
	Tail Aspect Ratio	aero_tail_aspect	2.56			Tail Sweep	aero_tail_sweep	0.59	rad	0.9948	0.6458	0.5934	0.78
	Tail Taper Ratio	aero_tail_taper	0.52			Tail Mean Aerodynamic Chord	aero_tail_mac	9.11	inches	12.3	14.2	9.11	15
28		aero_tail_le	134	inches		Tail Aerodynamic Center							
29	Tail Thickness-to-Chord, max		0.09			(from tail MAC leading edge)	aero_tail_ac_le	2.28	inches	6.2	4.9	2.28	3
	Tail LE Thickness Angle	aero_tail_le_angle	45	deg		(from nose)	aero_tail_ac_nose	140.70	inches	131.6	150.3	140.70	
	AOA for Tail Sizing	aero_tsize_aoa	0	deg		Tail Area	aero_tail_area	198.00	inches ²	221.76	322.56	198	365
32	Description Flight Condition Input	Variable	Value	Units		Tail Outboard (Y) Cp (from root)	aero_tail_y_cp	5.03	inches	4.00	5.4	5.03	4

Tactical Missile Design Spreedsheet

				5					Propulsion	1
		e done	other sheets ar	through Master Output, as	t Sheet, not	tly to the Flyou	are linked direct	erim Input Values	*** The Propulsion Inte	2
		2		Cruise Input Values					Boost Input Values	3
Uni	Default Value	Value for calc.	Variable	Description	Units	Default Value	Value for calc.	Variable	Description	4
no unit	1	8	Engine_type_c	Engine Type	no units	1	1	Engine_type_b	Engine Type	5
no unit	4	6	Fuel_type_c	Fuel Type	no units	4	5	Fuel_type_b	Fuel Type	6
no unit	0.06	0.06	Fuel_air_c	Combuster Fuel-to-Air Ra	psi	1769	1950	Pc_b	Chamber Pressure	7
Rankin	4500	1800	T4_max_c	Max Combustor Temp	no units	6	8.2	ε_b	Expansion Ratio	8
Rankin	447.4	438.5	T0_c	Atmospheric Temperature	sec	3.26	2.49000	t_b	Boost Burn Time	9
no unit	1.4	1.40	ν c atm	Atmos. Specfic Heat Ratio						10
p	301	0	Pc c					Values	Boost Interim Input	11
se	10.86	0	t sustain		Units	Default Value	Value for calc.	Variable	Description	12
	6.2	n/a	εC	Expansion Ratio	feet	20000	0	Alt t	Alt @ launch	13
			20021		Ibm	84.8	143	W prop boost	Wt. booster propellant	14
			lues	Cruise Interim Input Val	inches^2	50.27	143.14	Sref_b	Reference Area	15
Uni	Default Value	Value for calc.	Variable	Description	111					16
no unit	1.99	0.80	M cruise t	Mach @ Boost End				lation Values	Boost Interim Calcul	17
ft/se	1037	1027	a_t	Speed of sound @ Cruise	Units	Default Value	Value for calc.	Variable	Description	18
Ibm	48.2	108.5	W_prop_cruise	Wt. Cruise propellant	no units	1.236	1.186	γ_b	Specfic Heat Ratio	19
					psi	6.75	6.11	Pa_b	Atmos. Prssure	20
			ion Values	Cruise Interim Calculati	no units	1.638	1.699	Cf_b	Thrust Coeff.	21
Uni	Default Value	Value for calc.	Variable	Description	ft/sec	5258	4939	c_star_b	Chara. Exit Velocity	22
ft-lbf/lbi	15,535,588	15,535,588	H_f	Fuel Heating Value	lbm/sec	26	57.430	mdot_b	mass flow	23
no unit	1.29	1.29	γ_c	Specfic Heat Ratio	no units	0.024	0.016811765	Pe_Pc_b	Exit Pressure Ratio	24
TU/lbm/l	0.3	0.30	Cp_c	Specific Heat	psi	45.79	32.7829	Pe_b	Exit Pressure	25
p	6.75	6.11	Pa_c	Atmos. Prssure	inches^2	2.419	4.517	A_throat_b	Booster Throat Area	26
Rankin	4000	4472	T4_c	Combustor Temperature	inches^2	14.52	37.22	A_exit_b	Booster Exit Area	27
no unit	1.530	n/a	Cf_c	Thrust Coeff.						28
ft/se	5300	n/a	c_star_c						Boost Output Values	29
Ibm/se	4.4	#DIV/0!	mdot_c	mass flow	Units	Default Value	Value for calc.	Variable	Description	30
no unit	0.024	0	Pe_Pc_c	Exit Pressure Ratio	lbf	7000	14980	Thrust_b	Booster thrust	31
p	45.79	0.00	Pe_c	Exit Pressure	sec	268	261	lsp_b	Booster Isp	32
inches^	2.419	0.000	A_throat_c	Cruise Throat Area					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33
inches^2	14.52	0.00	A_exit_c	Cruise Exit Area						34
										35
				Cruise Output Values						36
Uni		Value for calc.	Variable	Description						37
se		3570	lsp_c	Cruise Isp						38
18	1018	N/A	Thrust c	Cruise Thrust	ea), it may	he reference are	e (larger than t	xit area is too larg	If the ex	39

Updates and New Baselines

*Projectiles not to scale

Harpoon Missile, an allweather, over the horizon, anti-ship missile

MK-84 Joint Direct Attack Munition, a 2,000 lb., all-weather precision guided "smart bomb"

Updates and New Baselines

- Previously: Tail surface was iteratively sized to provide zero-static margin
 - Now: User has the option to utilize a specific tail configuration
- Previously: Detailed analysis of different flight paths were not fully incorporated
 - Now: Ballistic, loft, coast & glide trajectories
- Previously: A discrete atmospheric lookup table was required
 - Now: A linear interpolation of atmospheric conditions exists

Use Case Example

M982 Excalibur

- Attaching deployable wings (GBU-39) to an SDB (M982 Excalibur)
- ➤ Determine apogee of flight then maximum lift-to-drag ratio, using optimization, to then calculate glide range
- > Result: an estimated range of 60.5 km (37.6 mi)

Verification and Validation

- Dissected every physics-based equation driving the TMD spreadsheet
- Developed an independent model from proprietary software
- Consulted with missile design expert, Eugene Fleeman

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS