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ABSTRACT 

 

Using mainstream Artificial Intelligence/Machine Learning (AI/ML) algorithms, entire classes of practical use cases are 

doomed to be computationally intractable or require many multiple universe-lifetimes of data collection.  I/ITSEC paper 19149 

introduced an innovative architectural approach to AI where neural sigmoid functions are replaced by mathematical models of 

arbitrary complexity, thus collapsing net sizes and depth, and ultimately reducing computational and data requirements.  

Without the constraints imposed by neural assumptions, mathematical models may be nonlinear and/or discontinuous and may 

be guided by human knowledge of the system.  This patent pending/novel approach, along with advanced optimization methods 

presented in I/ITSEC paper 19109, forms the basis a new family of Evolved AI solutions. 

 

During a January 2020 National Defense interview, NDIA’s Senior Fellow for AI expressed how algorithms and framework 

have evolved beyond supervised learning into unsupervised and reinforcement learning.  Having presented the algorithms and 

laid the framework for Evolved AI, the focus of this paper shifts to applications of this emerging technology to stochastic 

clustering. 

 

The paper first describes how the laptop-executable approach combines elements of both hard and soft clustering without the 

need for cleaning/scaling data, nor the need for training data.  Unlike k-Means and k-Medoids, the cluster number (k) is not 

needed a priori, as with Hierarchical Clustering.  By leveraging Fuzzy c-Means and Gaussian Mixture Models, data points may 

belong to more than one cluster having different sizes and correlations.  Overall, cluster number is adaptively determined from 

the distribution of resultant cluster permutations.  The paper then presents and discusses an example in the context of pulse 

spectrum analysis where preliminary work in applying multi-dimensional stochastic clustering has proven successful.  Upon 

summarizing results, the paper concludes by recommending applications of this emerging technology to Training and 

Education, for example measuring pilot training exercise data and clustering results in terms of ideal execution. 
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MOTIVATION 

 

Motivation for this paper is driven by the need for an augmented approach to deep learning neural nets in response to 

their many criticisms.  Recapitulation of the criticisms are summarized below: 

• They’re shallow: Little innate knowledge is required on behalf of the designer where architectural selection 

becomes an exercise in numerical investigation.  The depth of deep learning is composed of an arbitrary number 

of nodes and hidden layers, this includes the large-scale repetition of similar, simple nodes.  In the end, the 

designer is often unable to explain why one architecture is used over another. 

• They’re greedy and brittle: Big data is required to train and test deep learning neural nets which often break when 

presented with new data.  The need for large datasets is driven by the memorization technique behind deep 

learning.  After the neural net is trained to memorize a dataset, it often breaks when attempting to apply it to a 

generalized set of data outside the training space.  Furthermore, the order in which the training data is presented 

impacts performance. 

• They’re opaque: There is a lack of transparency due to the difficulty in understanding the meaning between the 

inputs, interconnections, and outputs.  This opaqueness is what labels them as black boxes.  Deep learning neural 

nets essentially fit data to a curve, but nobody knows the parameters associated with the equation.  The U.S. 

Military wants its autonomous machines to explain themselves (Knight, 2017) as well as wanting to understand 

any assumptions, limitations, and associated errors. 

 

In an MIT Technology Review article (Hao 2020), two AI experts (Dr. Gary Marcus and Dr. Danny Lange) weigh-in 

on the future of AI.  Dr. Marcus argues in alignment with the criticisms above and claims deep learning shortcomings 

are inherent to its technique.  Dr. Lange, while taking the opposite side of the debate, still concedes (i) training data 

needs to be constantly tailored for a specific application and (ii) the AI solution needs to be fed enough data and have 

the right architecture.  Quantified, he claims 10 to 20 million images are far from enough data.  Thus, Dr. Lange also 

acknowledges shallow, greedy, and brittle criticisms. 

 

All this criticism culminates into trust issues with deep learning neural net architectures.  Just changing our attitude 

about AI is not going to resolve the issue.  Instead, action needs to be taken to resolve these criticisms. 

 

ROBUST / EVOLVED AI 

 

(Marcus 2020) classifies deep learning as narrow intelligence in the context of closed-ended domains, e.g., games, 

object classification, and speech recognition.  Where there is success, the results are also spotty and pointillistic, with 

unreliability leading to untrustworthiness.  For example, figure 1 (left) shows a sample of how an object in a 

noncanonical orientation and context fools many current object classification systems (Alcorn et al, 2018).  The rolled-

over school bus was classified as a snowplow.  Figure 1 (right) shows a sample of how an adversary inserted material 

to fool a large-scale language model (Jia Liang, 2017).  From the QuAD dataset, the BiDAF Ensemble model 

originally gets the answer correct but is fooled by the addition of an adversarial distracting sentence, “Quarterback 

Jeff Dean had jersey number 37 in Champ Bowl XXXIV.” 

 

(Marcus 2020) goes on to identify requirements necessary for moving toward what he calls Robust AI – a hybrid, 

knowledge-driven, cognitive model-based approach.  As each of the requirements is examined in more detail, the 

author will reintroduce the postulated approach referred to as Evolved AI (Allen, 2019). 
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Figure 1 - Failures of Image and Speech Recognition 

 

Reassuringly, both AI experts (Dr. Marcus and Dr. Lange) agreed on the need for a hybrid/multi-model approach (Hao 

2020).  A hybrid approach incorporates symbolic algorithms into the model architecture.  Algorithms like these are 

prevalent in everyday computer operating systems and applications we fully trust.  Evolved AI architectures may be 

based on mathematical models, physics-based models, deep learning neural net models – the point here is to develop 

a hybrid architecture leveraging the benefits each model has to offer.  Google Search is an example of a hybrid of 

symbolic manipulation with highly optimized deep learning – not quite robust AI, but nevertheless, a step in that 

direction.  Evolved AI also allows for architectures of arbitrary complexity and diversity, which begins to mimic 

organic intelligence with specialized processes.  Just as our brains have specialized centers for speaking, seeing, 

reading, and recognizing faces, it makes sense that an AI architecture which has specialized capabilities would be 

more powerful and reliable than one which was…  …shallow. 

 

Robust AI requires various forms of structured, abstract knowledge in a causal nature.  Rather than starting the learning 

process from scratch, the learning systems should be prepopulated with knowledge, a priori.  Evolved AI may call 

upon subject matter experts to provide what would be considered innate knowledge for the system.  For example, 

think of the first day school where the professor gives a quiz to baseline student knowledge.  If the students have a 

great deal of innate knowledge, it makes the new learning process easier.  Furthermore, depending on the learning 

domain, this innate knowledge could be spatial, physical, psychological, temporal, and/or causal.  At the very least, 

the knowledge should be based on common sense. 

 

As mentioned previously, current deep learning approaches are trying to memorize what is presented to them, hence 

the need for large datasets.  Was it more beneficial for the student to memorize the answers to a test or learn critical 

thinking to solve problems?  Robust AI requires the ability to draw upon inferences through reasoning.  Naturally, the 

ability to inference is based on probability and Evolved AI operates on a stochastic engine.  Additionally, the nonlinear, 

nonconvex optimization engine (Allen, 2019) provides the ability to solve problems with discontinuities.  As such, 

Boolean logic gates may be incorporated into hybrid architectures providing the basis for fundamental reasoning and 

decision-making.  In fact, Evolved AI has been successfully applied to reinforcement learning and results will be 

presented in a forthcoming paper. 
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The seminal paper (Allen, 2019) presented a detailed application to supervised learning.  In this paper, the flexibility 

of Evolved AI is extended by application to unsupervised learning.  However, in the spirit of Robust AI, the underlying 

algorithm is a hybrid architecture comprising the benefits of various unsupervised learning approaches as well as 

statistical inference to determine centroidal location. 

 
UNSUPERVISED LEARNING / STOCHASTIC CLUSTERING 

 

During a January 2020 National Defense interview, NDIA’s Senior Fellow for AI expressed how algorithms and 

framework have evolved beyond supervised learning into unsupervised and reinforcement learning.  In direct response, 

this paper focuses on an unsupervised learning application within the Evolved AI context.  As mentioned previously, 

a forthcoming paper will respond with a reinforcement learning application, thus demonstrating the flexibility and 

applicability of the Evolved AI to solve a wide range of machine learning problem types.  Before describing 

unsupervised learning in the context of Evolved AI, machine learning methods are summarized. 

 

In general, there are three types of machine learning methods, selection and implementation of which depends on how 

data is being manipulated – they are supervised, unsupervised, and reinforcement learning.  In the case of supervised 

learning, a model is trained on known input and known output data to predict future outputs.  There are two subsets 

to supervised learning: regression techniques for continuous response prediction and classification techniques for 

discrete response prediction.  In the case of unsupervised learning, clustering techniques are used to identify patterns 

in the input data.  There are two subsets of unsupervised learning: hard clustering where each data point belongs to 

only one cluster and soft clustering where each data point can belong to more than one cluster.  Finally, with 

reinforcement learning, a model is trained on successive iterations of Markov decision-making, where rewards are 

accumulated based on the results of each decision.  A machine learning practitioner will recognize there are many 

methods to solve these problems, each having their own set of implementation requirements. 

 

Since the focus of this paper is on unsupervised learning, details of hard clustering and soft clustering algorithms are 

examined.  Non-neural net hard clustering algorithms include k-Means, k-Medoids, and Hierarchical Clustering; soft 

clustering algorithms include Fuzzy c-Means and Gaussian Mixture Models, summarized in Table 1. 

 

Table 1 - Unsupervised Learning Methods and Algorithms 
Hard Clustering Soft Clustering 

K-Means Fuzzy c-Means 

K-Medoids Gaussian Mixture Models 

Hierarchical Clustering  

 

Hard Clustering 

 

The k-Means algorithm partitions data into k mutually exclusive clusters.  Whether or not a data point fits within a 

cluster is determined by its distance relative to the cluster’s centroid (which doesn’t have to coincide with a data point 

from the dataset).  The k-Medoids algorithm behaves like the k-Means algorithm except the centroid must coincide 

with a data point from the dataset.  These algorithms excel when the number of clusters is known and when a large 

dataset needs to be clustered quickly.  Clearly the limitation is having to know the number of clusters a priori.  

Hierarchical Clustering, which excels when you don’t know how many clusters there are, analyzes similarities 

between data point pairs and groups them into a binary hierarchical tree. 

 

Soft Clustering 

 

The Fuzzy c-Means algorithm flexibly allows data points to overlap with more than one cluster. Still, the number of 

clusters must be known ahead of time.  The Gaussian Mixture Model algorithm also allows data points to overlap, but 

the data points are generated from multivariate normal (Gaussian) probability distributions. 

 

Evolved AI (Stochastic Clustering) 

 

Evolved AI’s unsupervised learning algorithm is a hybrid architecture comprising the benefits of hard and soft 

clustering leveraging statistical inference to determine cluster number as well as centroid location.  Unlike k-Means 

and k-Medoids, the cluster number (k) is not needed a priori – like Hierarchical Clustering which also does not depend 
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on knowing the cluster number ahead of time.  By leveraging Fuzzy c-Means and Gaussian Mixture Models, data 

points may belong to more than one cluster having different sizes and correlations.  Overall, cluster number is 

adaptively determined from the distribution of resultant cluster permutations. 

 

Figure 2 (left) shows a simplistic artificial neural network architecture used in deep learning where additional hidden 

layers have been added providing depth.  In practice, deep learning networks may have tens of hidden layers or more.  

It is assumed the reader has a general understanding of how deep learning neural networks operate. 

 

           
Figure 2 - Artificial Neural Network for Deep Learning (left), Evolved AI’s Architecture (right) 

 

Figure 2 (right) shows the architecture of Evolved AI which functions as follows: signal #2 is sent to the mathematical 

model yielding output signal #3.  The error signal #4, which is the difference between the feedforward signal #1 and 

the output signal #3, is minimized.  Minimization of error signal #4 is achieved through optimization techniques by 

adjusting parameters within the mathematical model.  Unsupervised learning (stochastic clustering) problems are 

solved by connecting the known input to both signal #1 and signal #2.  By minimizing the error, signal #3 will match 

signal #1 and thus, characterize the mathematical model.  For example, if the input signals (#1 and #2) happen to be 

a data point with a value of four and the mathematical model is the function ax+b, then the system will force the 

parameters (a,b) = (1,0), (3/4,1), (1/2,2), etc.  As new data is presented to the model, e.g., five to yield (a,b) = (1,0), 

4/5,1), (3/5,2), etc. parameters (a,b) will take on various pairs tending to a pair with a higher probability of occurrence, 

in this case (1,0). 

 

The mathematical model may be generic or specific, depending on the application.  If available, a practitioner with 

area expertise should incorporate a priori knowledge into the design of the mathematical model.  The philosophical 

argument is not one of nature versus nurture, but nature and nurture, where leveraging a priori knowledge 

complements the learning process.  In the next section, Evolved AI’s hybrid architecture is applied to pulse spectrum 

analysis where the mathematical model characterizes radio frequency (RF) signals by center frequency (FC), pulse 

width (PW), and bandwidth (BW).  But, lets look at the mathematical model in some detail first. 

 

 
Figure 3 -An oversimplified example of k-Medoids for two clusters and two sets of data 
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Figure 3 shows an oversimplified mathematical model for k-medoid clustering.  Two (two-dimensional) medoids and 

two data points are used to describe the model.  The minimum distance between each data point [(DX1,DY1) and 

(DX2,DY2)] is computed for each medoid [(MX1,MY1) and (MX2,MY2)] to associate each data point with a medoid.  

The minimum distances (for each medoid) are summed as the cost function with the goal of minimizing this cost.  

Optimization techniques automatically assign data points to their closest medoid.  With this basic understanding, the 

model used in the next section is expanded to include three-dimensional data (X=center frequency, Y=pulse width, 

and Z=bandwidth), nine data sets [(DX1,DY1,DZ1) through (DX9,DY9,DZ9)], and a randomly-selected number of 

medoid candidates. 

 

PULSE SPECTRUM ANALYSIS 

 

Often radar signals have a series of pulses with constant pulse repetition frequency (PRF), constant pulse width (PW), 

and constant pulse height.  As such, basic radar signals may be identified by these parameters. 

 

  
Figure 4 - Fourier Transform of Rectangular Pulses 

 

Figure 4 shows Fourier transforms of two different rectangular pulse trains.  To the left is a set of plots for a unity 

pulse width (above) and corresponding “sinc” envelope (below).  To the right is a set of plots showing the impact of 

doubling the pulse width and lowering the pulse repetition frequency (above) where the sidelobes are narrowed and 

the spectral density increases (below).  Note the main lobe width is 2/PW as may be seen from where each side of the 

main lobe crosses zero.  In summary, narrower pulse width corresponds with wider sidelobes and higher pulse 

repetition frequency corresponds with lower spectral density.  Finally, a “chirp” radar signal has a varying center 

frequency.  With this introduction to pulse spectrum analysis, hopefully it is clear why pulse width, pulse repetition 

frequency, and center frequency are important parameters.  Recall, pulse width and center frequency are two of the 

parameters being sought after by Evolved AI’s unsupervised learning (stochastic clustering) mathematical model. 

 

Evolved AI Applied to Pulse Spectrum Analysis 

 

Nine datasets totaling over 500,000 points (FC, PW, and BW) serve as the input with the goal of understanding radar 

signal characteristics.  Three candidate medoids (one for each of the parameters FC, PW, and BW) are randomly 

selected from the nine datasets.  For each of the three candidate medoids, their corresponding parameters are identified 

and used to compute the Euclidean distance between them and the remaining data points.  Stochastic optimization is 

invoked to find the minimum distances between each of the three candidate medoids and the rest of the data points.  

At the completion of this step, the candidate medoid is no longer a candidate, but the actual medoid for the cluster.  

The actual medoid may be used to identify the cluster or, as has been done, the centroid of the cluster is calculated – 

which doesn’t differ much only in that the medoid is an actual data point (ala k-Medoid) whereas the centroid may not 

be an actual data point (ala k-Means). 

 

Evolved AI’s unsupervised learning analysis formed three stochastic clusters as displayed in Table 1.  In the table, the 

first cluster centroid has a center frequency (FC) of 4.64 MHz, a pulse width (PW) of 5.39 s, and a bandwidth (BW) 

of 0.38 MHz; the second cluster centroid has FC=6.31 MHz, PW=2.09 s, and a BW=1.13 MHz; and the third cluster 

centroid is located at FC=3.18 MHz, PW=2.24 s, and a BW=1.07 MHz. 
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Table 1 - Three Cluster Centroids 
Cluster FC (MHz) PW (s) BW (MHz) 

1 4.64 5.39 0.38 

2 6.31 2.09 1.13 

3 3.18 2.24 1.07 

 

Each of the nine datasets associates itself with a cluster centroid as seen in Table 2.  In the table, the aggregate 

parameters of each dataset are reported.  For example, the first and sixth datasets associate themselves with the first 

cluster centroid, i.e., the aggregate center frequency (FC) of 6.05 MHz, a pulse width (PW) of 4.00 s, and a bandwidth 

(BW) of 0.40 MHz from the first dataset and the aggregate center frequency (FC) of 3.22 MHz, a pulse width (PW) 

of 5.98 s, and a bandwidth (BW) of 0.34 MHz from the sixth dataset associate themselves with the first cluster 

centroid FC=4.64 MHz, PW=5.39 s, and a BW=0.38 MHz from Table 1.  Likewise, the second, third, fourth, fifth, 

and seventh datasets associate with the second cluster centroid, and the sixth, eighth, and ninth datasets associate with 

the third cluster centroid.  Interestingly, the sixth dataset associates itself with either the first cluster centroid or the 

third cluster centroid.  By inspection, one can see in the former case, the sixth dataset aligns more with PW and BW; 

whereas in the latter case the sixth dataset aligns more with FC.  This flexibility is attributed to the stochastic nature 

of the datasets.  The physical explanation of this binary association is due to signal type.  If the signal is assumed to 

be a radar chirp, then the center frequency plays a role; otherwise, pulse width and bandwidth dominate. 

 

Table 2 - Cluster Centroids and Datasets 
Cluster/Dataset FC (MHz) PW (s) BW (MHz) 

1/1 6.05 4.00 0.40 

1/6* 3.22 5.98 0.34 

2/2 6.06 2.49 0.80 

2/3 6.47 3.34 0.60 

2/4 6.33 1.66 1.20 

2/5 6.19 1.99 1.00 

2/7 6.48 0.99 2.01 

3/6* 3.22 5.98 0.34 

3/8 3.18 2.98 0.67 

3/9 3.15 1.18 1.70 

 

Figure 5 shows a three-dimensional plot of the clusters and their corresponding variance.  Cluster centroid #1 from 

Table 1 is the largest ellipsoid at the base of the plot; cluster centroid #2 is the ellipsoid tilted; and cluster centroid #3 

is the ellipsoid located in the bottom-left/near corner. 

 

 
Figure 5 – 3D Plot of Cluster Centroids by FC, PW, and BW 
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This section concludes by recognizing Evolved AI’s hybrid (hard and soft clustering) architecture is flexible to be 

applied to stochastic unsupervised learning.  This hybrid approach is a step in the direction of robust AI. 

 

SUMMARY 

 

Motivation for Robust AI – more than deep learning alone – has been presented.  A step in this direction is to explore 

hybrid architectures and incorporate a priori knowledge.  In a previous paper, it was shown how these features were 

applied to supervised learning.  NDIA’s Senior Fellow for AI inspired the application of these same features to 

unsupervised learning.  Evolved AI’s unsupervised learning algorithm is a hybrid architecture comprising the benefits 

of hard and soft clustering, leveraging statistical inference, to determine cluster number as well as centroid location. 

 

The system successfully proved its utility for multi-dimensional (center frequency, pulse width, and bandwidth) 

stochastic clustering when performing pulse spectrum analysis of radar signals.  In the final analysis, the three 

parameters formed themselves into three cluster centroids (Table 1).  Given these centroids, the datasets associated 

themselves with each cluster centroid accordingly (Table 2).  Plotting the results (Figure 4) shows a 3D visualization 

of the stochastic ellipsoids. 

 

The next step (to be done) is to extend the use of this system to determine the pulse repetition frequency (PRF).  

Referring to the bottom-left plot of Figure 3, the PRF (or pulse repetition interval, PRI) is the time between the vertical 

spectral lines forming the envelope.  The PRF is the primary defining characteristics of a radar system.  Long-range 

signals require lower PRFs (fewer pulses with less energy); while short-range signals require higher PRFs (more 

pulses with more energy). 

 

Other Applications 

 

While pulse spectrum analysis is interesting and applicable, another area of interest may be training and education.  

At the January 2020 Air Force Agency for Modeling and Simulation (AFAMS) Training Innovation Workshop, an 

agenda item covered data science for Pilot Training Next (PTN) efforts.  The discussion centered around measuring 

position, velocity, and orientation data of pilot training exercises and comparing it with ideal execution.  Naturally, 

this is a sensitive topic which invoked concern over the method being used to compute the measurement.  Perhaps an 

objective approach to measuring pilot training exercise data and clustering results in terms of ideal execution might 

be an additional approach to compliment current methods. 
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