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Background

. Missile Design and
» Fleeman spreadsheet project® Systems Engineering

» Turbojet missiles and guided bombs
» Separate model built for V&V
» Optimization capability
» All subsystems modeled
» Aerodynamics focus or this presentation

Eugene L Fleeman

*Spears, S., Allen, R., and Fleeman, E., “First-Order Conceptual Design for Turbojet Missiles and
3 Guided Bombs,” AIAA SciTech Conference, San Diego, CA, 3-7 January 2022, AIAA-2022-0321
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Conceptual Design and System Engineering
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» In Missile Design and System Engineering
(AIAA Education Series), Eugene Fleeman
presents a comprehensive approach to first-
order conceptual missile design and system
engineering

» Two decisions (Performance and Measures
of Merit) within an iterative process
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Modified Conceptual Design for MBSE

Mission Requirements
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Model Implementation

» Digital twin generic missile model architected from the physics-based
engineering equations found in Fleeman’s text — implemented in Evolved AI™
capable of machine learning and optimization

» Model organized by subsystem, i.e., aerodynamics, propulsion, mass properties,
flight performance, and measures of merit (robustness, lethality, miss distance,
observables, and survivability)

» Equations verified and validated by checking each formula with sample
calculations associated with the examples found in Fleeman’s text, his course
notes, or in some cases, direct correspondence

» Evolved Al and its capability of stochastic optimization allows the System
Engineer to optimize the flight performance criteria or measures of merit and
observe the influencing parameters

; JAIAA
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Aerodynamics Application

» For certain flight conditions (Mach, altitude, and angle-of-attack), the
system engineer may maximize glide range by maximizing L/D

» L/D is based on body geometry (body diameter & length, nose
bluntness & length) and aerodynamic surfaces (#canards, wings, and
tails and airfoil characteristics)

» Parameters vary with constraints, e.g., body diameter and length may
be constrained by the launch platform for which it will be integrated

» Optimal parameters are reported, including sensitivity analyses so the
System Engineer can immediately identify the performance drivers

; JAIAA
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Select Target Node

CONSTRAINTS
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User interface for optimizing

(maximizing) Glide Range
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Results with Loose Constraints

Results

* Glide Range = 149 km 2 Tail Sweep = 0.2 deg
AoA =1.74 deg 2 Tail Chord =1.0 in
2 Tail Span =9.9 in
Body Diameter =1 in 2 Tail NACA 0026
Body Length = 20 in
1 Wing Sweep = 1.2 deg
1 Canard Sweep = 2.1 deg 1 Wing Chord = 2.0 in
1 Canard Chord =1.4in 1 Wing Span =30 in
1 Canard Span =6.2 in 1 Wing NACA 0028
1 Canard NACA 0021

The result is essentially an arrow,
a little difficult to pack electronics.
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Tail span half the
body length.

Wingspan greater
than body length.
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Tighter Constraints: Excalibur

Results
» Excalibur - AoA=10.5deg
> M=1061b 1 Canard Sweep = 0.3 deg
1 Canard Chord =1.5in
= I + 1 Canard Span=5.4in
> L=39.21n ) + 1 Canard NACA 0020
» D=155mm + 2 Tail Sweep = 5.0 deg
- - . 2 Tail Chord =1.4 in
» Glide Range = 28.6 km S AlSe e
. 2 Tail NACA 0020

Variant 1a-1 has a range of 23 km
https://en.wikipedia.org/wiki/M982_ Excalibur
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» Applying first-order conceptual design optimization (with
maximum glide range as an MBSE System Requirement)
achieved reasonable results (29 km) with the M982
Excalibur (variant 1a-1) performance (23 km)

14 QAMA
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Conclusions

» While the example focused on aerodynamic performance, the digital
twin has the capability to optimize parameters associated with
propulsion alternatives (rocket, turbojet, ramjet); mass property
alternatives and corresponding thermal properties; and other measures
of merit (IR, RF, and SAL seekers, accelerometers, gyroscopes,
accuracy, warhead lethality, observables, and launch platform
integration)

» With the proposed two modifications to the conceptual design and
system engineering process, the System Engineer can apply MBSE to
optimize the design of a missile based on mission and system
(performance/measure of merit) requirements

15 @AMA
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Propulsion

» Given nozzle throat and exit diameter/area (expansion ratio)
» Determine exit pressure, chamber pressure ratio

» Given a desired thrust (FOCD thrust = 10X launch weight)
» Determine optimal chamber pressure
» Determine burn area and hence the required volume
» Determine the burn time

» All based on an assumed propellant

» Density, characteristic velocity, burn rate, burn rate exponent,
discharge efficiency coefficient
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