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ABSTRACT 

 

Challenges in aviation maintenance include “just in time” maintenance and logistic support chain requirements.  

Optimizing the correct level of investment in repairable assets while minimizing storage footprint requirements at 

multiple sites is highly desirable.  Particularly challenging is accounting for the number of spare assets needed when 

there is a lack of availability due to shortages in the industrial supply chain, an inaccurate forecast, and/or uncertain 

maintenance turn-around times.  This multi-dimensional, time-varying problem is currently addressed with human 

maintenance schedulers and heuristics – leading to situations with ambiguous actions and unintended long-term 

consequences. 

 

This paper demonstrates how model-based reinforcement learning is used to choose the optimal aviation maintenance 

policy when considering both immediate and subsequent costs.  Aircraft states are defined according to equipment 

operational capability (EOC) codes which classify the degradation of equipment mission capability.  Based on the 

EOC codes, actions are selected from a set of possible choices.  The consequence of an action is realized immediately 

as a nonlinear availability or financial cost.  Each decision determines the transitional probabilities for the next aircraft 

state and each action prescribes a policy for stochastic decision processes which impose constraints on the model.  The 

optimal policy is realized by minimizing the long run expected average cost.  The architecture may be any 

mathematical and/or logical instantiation and does not require neural networks – although neural networks are wholly 

realizable within this framework.  A benefit of this approach is a fully transparent and explainable model unlike the 

“black boxes” of mainstream AI. 

 

The paper also explains how this model may be extended to be a more effective decision-making/prescriptive analytics 

tool for aviation maintainers and fleet management.  Further extensions include capital equipment in general, whether 

military, industrial, or commercial. 
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MOTIVATION 
 

Artificial Intelligence (AI) that teaches itself to achieve a goal is the next big thing, but most companies don’t know 

how or when to apply it (Hume, Taylor 2021).  Unlike supervised and unsupervised learning which are typically static 

optimization applications, reinforcement learning operates in a dynamic environment.  To apply reinforcement 

learning, (Mah 2021) suggests businesses start with a list including a sequence of frequent actions with the opportunity 

for feedback.  Brig. Gen. Eric Austin (director USMC Capabilities Development Directorate) said other key areas of 

AI development include support for maintenance and improving logistics (Tadjdeh 2021).  These are motivations for 

selecting aviation maintenance as an application of model-based reinforcement learning described within this paper. 

 

Motivation for applied research of reinforcement learning alone emanates from an interview with NDIA’s Senior 

Fellow for AI.  When asked how AI has transformed, Shane Shaneman (strategic director of national security and 

defense at Carnegie Mellon University) said, “…you’ve seen continued evolutions of both the algorithms and the 

framework and also new styles of machine learning.  Of course, going…into new areas of both unsupervised as well 

as reinforcement learning…”  (Tadjdeh, 2020). 

 

Motivation for model-based reinforcement learning stems from the community’s overall desire for novel approaches 

to machine learning beyond neural nets and deep learning.  (Marcus 2020) identifies requirements necessary for 

moving toward what he calls Robust AI – a hybrid, knowledge-driven, cognitive model-based approach.  A hybrid 

approach incorporates symbolic algorithms into the model architecture.  Algorithms like these are prevalent in 

everyday computer operating systems and applications we fully trust. 

 

Our Evolved AI approach takes hybrid and physics-based architectures to another level by blending data and causality.  

Afterall, “If you have insight into a problem that can help to solve it, then by all means, use it!” (Heaton, 2013).  We 

have previously researched and reported on machine learning (supervised regression and unsupervised clustering) 

following this novel approach.  So it’s naturally motivating to follow up with research of reinforcement learning. 

 

BACKGROUND 

 

There are three fundamental types of machine learning methods, supervised learning (Allen, 2019), unsupervised 

learning (Allen 2020), and reinforcement learning – selection and implementation of which depends on how data is 

being manipulated.  In the case of supervised learning, a model is trained on known input and known output data to 

predict future outputs.  There are two subsets to supervised learning: regression techniques for continuous prediction 

and classification techniques for discrete prediction.  In the case of unsupervised learning, clustering techniques are 

used to identify patterns and/or structures in the input data.  There are two subsets of unsupervised learning: hard 

clustering where each data point belongs to only one cluster and soft clustering where each data point can belong to 

more than one cluster.  There are two types of reinforcement learning: model-free and model-based.  With model-free 

reinforcement learning, the agent knows nothing about its environment and attempts to find the optimal outcome by 

performing an exhaustive search.  With model-based approaches, the practitioner provides a framework for the agent 

mailto:rallen@lone-star.com
mailto:zengel@lone-star.com
mailto:ehaney@lone-star.com


2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

 

IITSEC 2021 Paper No. 21199 Page 4 of 10 

 

to operate within thereby assisting the search for an optimal outcome.  While model-free techniques are currently more 

popular, the focus of this paper is on model-based reinforcement learning driven by the need for a hybrid/multi-model 

approach (Hao 2020) as required for Robust AI (Marcus 2020). 

 

EVOLVED AI 

 

Figure 1 shows the architecture of Evolved AI which functions as follows: signal #2 is sent to the mathematical model 

yielding output signal #3. The error signal #4, which is the difference between the feedforward signal #1 and the 

output signal #3, is minimized.  Minimization of error signal #4 is achieved through optimization techniques (Allen, 

2019) by adjusting parameters within the mathematical model.  By minimizing the error, signal #3 will match signal 

#1 and thus, characterize the mathematical model. 

 

As a practical example, consider digital filter design where a Bode plot is given with a desired amplitude response.  

The task is to fit the desired response with a 5th-order polynomial (mathematical model).  By comparing the desired 

signal #1 with output signal #3 via an error function, e.g., a Euclidean norm, optimization (minimization of the norm) 

will force the coefficients of the polynomial to produce the desired response, known as a matched filter. 

 

 

Figure 1 - Evolved AI’s Architecture 

 

The mathematical model may be generic or specific, depending on the application.  If available, a practitioner with 

area expertise should incorporate a priori knowledge into the design of the mathematical model.  It is important to 

point out that the mathematical model can include nonlinearities, nonconvexities, and mathematical and/or logical 

discontinuities.  Optimization of nonlinearities is not unique, but nonconvexity certainly reduces the set of systems 

which provide solutions.  When mathematical discontinuities are included, the number of systems providing solutions 

reduces further.  Yet, even in this case, current machine learning techniques find it difficult to approximate this type 

of discontinuity.  When considering logical discontinuities, e.g., Boolean logic gates like AND, OR, NOR, etc., the 

typical machine learning solution is to implement a perceptron for a single logic gate.  However, Evolved AI allows 

the practitioner to utilize the actual logic gate(s) explicitly even extending to compound discontinuities such as truth 

tables, multi-input minimum/maximum, and if-then logic. 

 

Since model-based reinforcement learning requires the practitioner to provide a framework, a mathematical (cost) 

model will be developed in the next section with application to aviation maintenance.  The goal is to search for an 

optimal maintenance policy given various maintenance approaches depending on the state of the aircraft.  Since no 

neural nets are used to solve this problem, the opaqueness of machine learning “black boxes” is removed so 

stakeholders can easily interpret the results and fully explain how the transparent system works. 

 

AVIATION MAINTENANCE 

 

Challenges in aviation maintenance include “just in time” maintenance and logistic support chain requirements.  

Optimizing the correct level of investment in repairable assets (spare parts) while minimizing storage footprint 

requirements at multiple sites is highly desirable.  Particularly challenging is accounting for the number of spare assets 

needed when there is a lack of availability due to shortages in the industrial supply chain, an inaccurate forecast, and/or 

uncertain maintenance turn-around times.  This multi-dimensional, time-varying problem is currently addressed with 
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human maintenance schedulers and heuristics – this can lead to situations with ambiguous actions and unintended 

long-term consequences. 

 

The solution to this problem is to apply model-based reinforcement learning.  Aircraft states are defined according to 

Equipment Operational Capability (EOC) codes which classify the degradation of equipment mission capability. 

Based on the EOC codes, actions are selected from a set of possible policy choices.  The consequence of an action is 

realized immediately as a nonlinear availability or financial cost.  Each decision determines the transitional 

probabilities for the next aircraft state.  Each action prescribes a policy for stochastic decision processes – which 

impose constraints on the model.  The optimal policy is realized by minimizing the expected average cost in the long 

run. 

 

Each aircraft platform and/or Weapons Replaceable Assembly (WRA) are assigned a OPNAV 5442 Mission Essential 

Subsystem Matrix (MESM).  This matrix provides the EOC codes for a particular aircraft/platform.  These codes 

range from “A” to “Z” with “A” being fully operational and “Z” being not operational at all.  Normally around the 

“L-Y” codes the system or subsystem is severely impacted and could be restricted in use for example a “L” code could 

be assigned to an aircraft with an Anti-Icing problem and could be restricted from flying in “Known Icing 

Conditions.”  EOC codes may be linked back to supply priority/urgency codes which determine the priority placed 

upon an asset in need of repair or replacement. 

 

Solution Formulation 

 

This section explains the different aspects of the solution formulation, including the conditional states of the aircraft, 

which actions/policies may be adopted, and costs associated with each action. 

 

The aircraft can be in one of four states: Brand New, Full Mission Capable (FMC), Partial Mission Capable (PMC) 

due to a single or multiple EOC codes, or Non-Mission Capable (NMC), as summarized in Table 1. 

 

Table 1 –Aircraft States 

State Explanation 

0 Brand New 

1 Full Mission Capable (FMC) 

2 Partial Mission Capable (PMC) 

3 Non-Mission Capable (NMC) 

 

At the risk of oversimplification for the sake of clarity, assume maintenance personnel can take only three different 

courses of action: (1) Do Nothing, (2) Overhaul, or (3) Replace the aircraft, summarized in Table 2.  An overhaul 

might be required if there is a discrepancy with the aircraft, for instance corrosion cracks.  Replacing the aircraft is 

required when the aircraft is beyond economic repair. 

 

Table 2 –Maintenance Actions 

Action Explanation 

1 Do Nothing 

2 Overhaul 

3 Replace 

 

If the Do-Nothing policy is adopted, then the mission capability state of the aircraft will degrade over time.  While 

there is a natural progression from Brand New through each state to NMC, there is some probability of skipping states 

depending on discrepancies.  These probabilistic state transitions are shown in the state transition matrix of Table 3.  

All of the probabilities in the following tables have been reasonably assumed.  For more precise probabilistic entries, 

one could access historical aircraft maintenance records. 
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Table 3 – “Do Nothing” Policy 

Do Nothing State Transition Matrix 

State 0 1 2 3 

0 0 7/8 1/16 1/16 

1 0 3/4 1/8 1/8 

2 0 0 1/2 1/2 

3 0 0 0 1 

 

As shown in Table 3, if the aircraft is initially in state 0 (Brand New), there is an 87.5% probability of transitioning to 

state 1 (FMC), a 6.25% probability of transitioning to state 2 (PMC), and a 6.25% probability of transitioning to state 

3 (NMC).  It is assumed the Brand-New aircraft transitions to the FMC instantaneously – analogous to driving a new 

automobile off the lot.  If the aircraft is initially in state 1 (FMC), there is a 75% probability of remaining in state 1 

(FMC), and a 12.5% probability of transitioning to state 2 (PMC) or state 3 (NMC).  There is 0% probability of 

transitioning to state 0 (Brand New) because of the Do-Nothing policy.  If the aircraft is initially in state 2 (PMC), 

there is a 50% probability of remaining in state 2 (PMC), and a 50% probability of transitioning to state 3 (NMC).  

Due to the Do-Nothing policy, there is 0% probability of transitioning back to prior states.  Finally, if the aircraft is 

NMC, it remains in that state due to the Do-Nothing policy. 

 

Now, assume the “Overhaul” policy takes the aircraft to state 1 (FMC) regardless of its prior state.  These 100% 

probabilities are shown in Table 4.  Note that this policy allows for overhauling a Brand-New aircraft and placing into 

the FMC state – which is absurd.  Not to worry, the cost of doing so will prohibit the solution from selecting this as 

an option.  Additionally, it doesn’t make sense to overhaul an FMC aircraft only to have it be in the same FMC state.  

Again, the cost of this effort (to be described shortly) will prohibit it as an option. 

 

Table 4 – “Overhaul” Policy 

Overhaul State Transition Matrix 

State 0 1 2 3 

0 0 1 0 0 

1 0 1 0 0 

2 0 1 0 0 

3 0 1 0 0 

 

Finally, consider the “Replace” policy, when the aircraft is sent to state 0 (Brand New) independent of its prior state.  

These 100% state transitions are captured in Table 5.  Similar to the “Overhaul” policy, the “Replace” policy has three 

situations that don’t make sense, especially replacing a Brand-New aircraft with a Brand New one.  Again, costs will 

render these options out of the running. 

 

Table 5 – “Replace” Policy 

Replace State Transition Matrix 

State 0 1 2 3 

0 1 0 0 0 

1 1 0 0 0 

2 1 0 0 0 

3 1 0 0 0 

 

Next, equations relating the conditional probabilities for a state (s), given an action (a), P(s|a), are formulated. 

 

Begin with the Brand-New state 0 and the probabilities for each action: Do Nothing 1, Overhaul 2, and Replace 3. 
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𝑃01 + 𝑃02 + 𝑃03 = 0𝑃01 + 0𝑃02 + 1𝑃03 + 0𝑃11 + 0𝑃12 + 1𝑃13 + 0𝑃21 + 0𝑃22 + 1𝑃23 + 0𝑃31 + 0𝑃32 + 1𝑃33   

 

The left side of this equation represents the probabilities of being in the Brand-New state and taking any of the three 

actions.  The right side represents the probabilities of each policy returning any given state (0 through 3) to the Brand-

New state (0).  Notice the column of 𝑃01, 𝑃11, 𝑃21, 𝑃31 corresponds to the 1st column of the Do Nothing policy; the 

column of 𝑃02, 𝑃12, 𝑃22, 𝑃32 corresponds to the 1st column of the Overhaul policy; and the column of 𝑃03, 𝑃13, 𝑃23, 

𝑃33 corresponds to the 1st column of the Replace policy.  The zero coefficients are intentionally retained for clarity. 

 

Likewise, the equation representing FMC (state 1) and the probabilities for each action (the 2nd column of each 

corresponding policy) result in the following equation: 

𝑃11 + 𝑃12 + 𝑃13 =
7

8
𝑃01 + 1𝑃02 + 0𝑃03 +

3

4
𝑃11 + 1𝑃12 + 0𝑃13 + 0𝑃21 + 1𝑃22 + 0𝑃23 + 0𝑃31 + 1𝑃32 + 0𝑃33   

 

The equation representing PMC (state 2) and the probabilities for each action (the 3rd column of each corresponding 

policy) result in the following equation: 

𝑃21 + 𝑃22 + 𝑃23 =
1

16
𝑃01 + 0𝑃02 + 0𝑃03 +

1

8
𝑃11 + 0𝑃12 + 0𝑃13 +

1

2
𝑃21 + 0𝑃22 + 0𝑃23 + 0𝑃31 + 0𝑃32 + 0𝑃33   

 

Finally, the equation representing NMC (state 3) and the probabilities for each action (the 4th column of each 

corresponding policy) result in the following equation: 

𝑃31 + 𝑃32 + 𝑃33 =
1

16
𝑃01 + 0𝑃02 + 0𝑃03 +

1

8
𝑃11 + 0𝑃12 + 0𝑃13 +

1

2
𝑃21 + 0𝑃22 + 0𝑃23 + 0𝑃31 + 0𝑃32 + 0𝑃33   

 

Simplifying the set of equations in the following format prepares them as equality constraints for solving the model-

based reinforcement learning problem. 

𝑃01 + 𝑃02 − 𝑃13 − 𝑃23 − 𝑃33 = 0   
1

4
𝑃11 + 𝑃13 −

7

8
𝑃01 − 𝑃02 − 𝑃22 − 𝑃32 = 0 

  
1

2
𝑃21 + 𝑃22 + 𝑃23 −

1

16
𝑃01 −

1

8
𝑃11 = 0 

𝑃31 + 𝑃32 + 𝑃33 −
1

16
𝑃01 −

1

8
𝑃11 −

1

2
𝑃21 = 0   

 

Finally, costs need to be considered.  Again, reasonable assumptions will be made.  For more precise costs, consult 

aircraft maintenance records.  If the aircraft is in the Brand-New state (0), no maintenance is required (Do Nothing, 

action 1) hence there is no cost.  As mentioned previously, it would be absurd to overhaul or replace a Brand-New 

aircraft, so these probabilities will be omitted, i.e., 𝑃02 = 𝑃03 = 0.  Now if the aircraft is in the FMC state (1) and no 

maintenance is performed (Do Nothing, action 1), the aircraft will become defective over time perhaps at a cost of 

$1M.  If the aircraft is in the PMC state (2) and no maintenance is performed (Do Nothing, action 1), the aircraft will 

become more defective perhaps increasing costs to $3M.  As a simplification, assume the aircraft is only overhauled 

(action 2) if it is PMC (state 2) at a cost of $4M and hence, 𝑃12 = 𝑃32 = 0.  Finally, let the cost to replace (action 3) 

the aircraft be $6M, which is the case regardless of the state of the aircraft.  The astute reader will notice the final case 

is when the aircraft is NMC and the Do-Nothing policy is adopted.  It doesn’t cost anything to Do Nothing with an 

NMC aircraft.  Since there is no contribution to the overall cost, 𝑃31 = 0.  The costs associated with each action, 

corresponding to a particular state, are summarized in Table 6. 

 

Table 6 – Cost Matrix 

State Action Cost ($M) 

0 1 0 

1 1 1 

2 1 3 

2 2 4 

1 3 6 

2 3 6 

3 3 6 
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From Table 6, the total cost ($M) is the summation of the individual costs 

0𝑃01 + 1𝑃11 + 3𝑃21 + 4𝑃22 + 6𝑃13 + 6𝑃23 + 6𝑃33 

 

The model-based reinforcement learning problem may now be cast.  The objective is to minimize the total cost subject 

to the equality constraints, with the inclusion of an additional equality constraint accounting for the sum of the 

probabilities to be unity.  Recall with model-based approaches, the practitioner provides a framework for the agent to 

operate within thereby assisting the search for an optimal outcome.  Here, the equality constraints provide that 

framework, assisting in the search for an optimal maintenance policy.  In mathematical parlance, 

{𝑚𝑖𝑛} 1,000,000𝑃11 + 3,000,000𝑃21 + 4,000,000𝑃22 + 6, 000,000(𝑃13 + 𝑃23 + 𝑃33) 

Subject to: 

𝑃01 − 𝑃13 − 𝑃23 − 𝑃33 = 0   
1

4
𝑃11 + 𝑃13 −

7

8
𝑃01 − 𝑃22 = 0 

  
1

2
𝑃21 + 𝑃22 + 𝑃23 −

1

16
𝑃01 −

1

8
𝑃11 = 0 

𝑃33 −
1

16
𝑃01 −

1

8
𝑃11 −

1

2
𝑃21 = 0 

𝑃01 + 𝑃11 + 𝑃21 + 𝑃22 + 𝑃13 + 𝑃23 + 𝑃33 − 1 = 0  

 

The Evolved AI model is shown in Figure 2.  The probabilities are shown on the left, individual costs are shown in 

the ovals, and total cost is the summation shown on the right. 

 

 
Figure 2 – Model-Based Reinforcement Learning in Evolved AI 

 

Upon execution of the model, the optimal policy probabilities are summarized in Table 7.  First, it is seen that the 

probabilities sum to unity. 

 

 

 



2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

 

IITSEC 2021 Paper No. 21199 Page 9 of 10 

 

Table 7 – Probabilities, States, and Optimal Policies 

Probability Value State Policy 

P01 2/21 0, Brand New 1, Do Nothing 

P11 5/7 1, FMC 1, Do Nothing 

P13 0   

P21 0   

P22 2/21 2, PMC 2, Overhaul 

P23 0   

P33 2/21 3, NMC 3, Replace 

 

Second, interpretation of the non-zero probabilities provide the optimal policy.  Since 𝑃01 is non-zero, instructions are 

for state 0, perform action 1, i.e., for a Brand-New aircraft, Do Nothing.  Likewise, for an FMC aircraft, Do Nothing; 

for a PMC aircraft, Overhaul; for an NMC aircraft, Replace.  Hance, the optimal policy is provided for each state pf 

the aircraft.  The (minimum) total cost for adopting this policy is $1,666,667. 

 

SUMMARY 

 

Aircraft states are defined according to Equipment Operational Capability (EOC) codes which classify the degradation 

of equipment mission capability. Based on the EOC codes, actions are selected from a set of possible choices.  The 

consequence of an action is realized immediately as a nonlinear availability or financial cost.  Each decision 

determines the transitional probabilities for the next aircraft state.  Each action prescribes a policy for stochastic 

decision process – which impose constraints on the model.  The optimal policy is realized by minimizing the expected 

average cost in the long run. 

 

This approach to mathematically assessing the maintenance policy of an aircraft, given its contextual state, should be 

compared against the status quo for aviation maintenance.  Currently, aircraft are typically under a preventative 

maintenance schedule where defined tasks are performed on rotating intervals of time and/or utilization.  The 

consideration of costs, current status of the aircraft, or the dynamic operating environment of business are not taken 

into account, or are left to human subjectivity.  This leaves actions open to interpretation and omits major business 

impacts.  In addition, decisions are made on an asset-by-asset basis and are not related to their impacts on overall fleet 

availability.  By imparting objective analysis through model-based reinforcement learning, these multi-faceted 

decisions can be made more consistent and reflective of overall operations. 

 

FUTURE WORK 

 

This high-level model may also be extended to be a more effective decision-making/prescriptive analytics tool for 

aviation maintainers and fleet management.  The courses of action required to satisfy the Summary statement in the 

preceding section will vary greatly and will be driven by large uncertainty related to the following conditions at the 

minimum 1) next intended mission/use of the aircraft, 2) availability of materiel resources, and 3) availability of down 

time to complete the repair and the skillset of the artisan required.  Variability substantially increases when the EOC 

code and mission-driven decisions directly impact Survivability or Lethality of the mission aircraft such as Electronic 

Countermeasure or Deceptive Electronic Countermeasure (ECM/DECM) systems designed to increase survivability 

in high threat situations.  These conditions can be included into the model since Evolved AI naturally incorporates 

uncertainty and the cost function can include a multitude of uncertain considerations.  Furthermore, aircraft states 

could be expanded by individual EOC code for higher fidelity and probabilistic cost metrics could be obtained to 

address airframe-centric maintenance requirements.  Additional extensions include capital equipment in general, 

whether military, industrial, or commercial. 
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