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ABSTRACT 

 

This paper discusses a novel approach to nonconvex optimization which has broad-reaching applications, including those 

prevalent in artificial intelligence, neural nets, supervised (regression and classification) and unsupervised (clustering) machine 

learning, and quantum computing. 

 

A system of methods which reaps the benefits of both grid search and random search, without their corresponding limitations, 

is uniquely combined with an exact method of multipliers to produce a novel approach to solving general nonconvex objective 

functions.  At its core, independent random variables adapt themselves to produce a finer search for an extremum, according 

to user-defined precision specification.  Because the system is gradient-free, the architecture allows for logic gates with 

implications for machine learning and quantum computing.  Furthermore, Monte Carlo methods increase confidence in locating 

the global extremum facilitating verification and validation of trustable artificial intelligence. 

 

Finally, as an example, the regression form of supervised learning (replacing neural net back-propagation with this novel 

nonconvex optimization approach) is applied to determination of an aerodynamic rolling moment coefficient.  The results of 

the new approach were favorably compared to that obtained by the traditional system identification method but were achieved 

using only 40% of the baseline training data and an order of magnitude less iterations.   
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MOTIVATION 

 

There are several sources motivating this innovative technology.  An MIT Technology Review on Intelligent Machines 

states, the U.S. Military wants its autonomous machines to explain themselves.  The latest machine-learning 

techniques are essentially black boxes.  DARPA is funding efforts to open them up (Knight, W., 2017).  DARPA also 

announced its Artificial Intelligence Exploration (AIE) program, a key component of the agency’s broader artificial 

intelligence (AI) investment strategy aimed at ensuring the United States maintains an advantage in this critical and 

rapidly accelerating technology area (DARPA, 2018).  In February, President Trump enacted the “American AI 

Initiative,” identifying AI as a priority for government research and development.  The next day, the DoD released its 

own AI strategy, positioning its newly created Joint Artificial Intelligence Center (JAIC) at the forefront of its efforts 

(Lamberth, M., 2019). 

 
BACKGROUND 

 

Perhaps the seminal optimization problem is rooted in the method of least squares, credited to Gauss in the late 18 th 

century and published by Legendre in the early 19th century.  This problem seeks to minimize the sum of the squares 

of the residual error between a set of observed data and a line fitted to them. 

 

In the 20th century, methods have been developed to solve problems applicable to operations research and management 

sciences including game theory, decision analysis, queueing theory, inventory theory, transportation, and networking.  

These problems are predominantly concerned with seeking the unique extremum of systems which exists due to what 

is known as convexity.  Figure 1 shows an example of a convex function where there is a unique extremum, in this 

case a minimum, at the origin.  Optimization of convex systems is not difficult when using modern computing 

equipment.  In fact, linear optimization was used in the 1940’s before general purpose digital computers existed.  

Today, digital systems optimize these relatively simple problems easily. 

 

 
Figure 1: Convexity – a unique extremum [0, 0] exists on the interval [-2, 4] 

 

However, most useful systems are not linear, not convex, or worse, may contain discontinuities.  Figure 2 shows an 

example of a nonconvex function which has several extrema.  In addition to multiple extrema, nonconvex functions 

pose other challenges including varying curvature, flat regions, deep wells, and saddle points when the curve becomes 

a higher dimensional surface.  Theoretical solutions for these problems do not exist and weak guarantees are based on 
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application-dependent approximations.  Furthermore, there are no recipes for parameter selection associated with any 

solution. 

 

 
Figure 2: Nonconvexity – multiple extrema [-1, -13], [1, 3], and [3, -22] exist on the interval [-2, 4] 

 

Thus, difficulty in optimizing nonconvex systems is an important topic for many practical applications, processes, and 

systems.  Aircraft and spacecraft optimal control, milling machine optimal cutting speed, automated bidding systems, 

and complex artificial neural networks associated with machine/deep learning are examples of the diversity of modern 

nonlinear and nonconvex systems. 

 

Disadvantages of Current Systems 

 

As will be explained later, constrained optimization may be cast into unconstrained optimization by augmenting the 

problem.  Without going into detail, Figure 5 shows some of the more popular multivariate numerical methods 

applied to constrained problems. 

 

 

Figure 5: Constrained Optimization Problems and Multivariate Numerical Methods 

 

Whether familiar with these methods or not, it’s easy to recognize a sample of their shortcomings. 

• a priori problem structure knowledge (e.g., quadratic, separable, convex, polynomial) is required for 

algorithm choice and parameter selection, including independent variables in the nonconvex case. 

• Numerical issues associated with (partial) derivatives for all gradient-based methods. 
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• Keen insight needed for the selection of a starting point for function evaluation methods. 

• Premature termination of nonconvex algorithms when local extrema are found. 

 

Therefore, a system is needed to solve the most-general nonconvex optimization problem and must be gradient-free 

(no derivatives or partial derivatives), must not require a priori problem structure knowledge for selecting a starting 

point or other parameters, and must increase confidence of locating global extrema. 

 

Because architectural foundation of complex problems of relevance contain inherent nonlinearities, nonconvexities, 

and possible unknown discontinuities, one of the many applications of this innovative technology is a substitution for 

back-propagation methods, associated with machine/deep learning.  That is, instead of back-propagation (which is the 

backward propagation of errors), this innovative technology achieves minimization of those errors directly. 

 

TECHNICAL APPROACH 

 

Due to inherent nonlinearities, nonconvexities, and discontinuities of many important systems, such as the complex 

artificial neural networks of machine/deep learning, a system is needed which addresses the disadvantages of current 

methods. 

 

To avoid numerical issues associated with gradient-based methods, a gradient-free method is desired.  Furthermore, 

since artificial decision-making network topologies may include non-differentiable logic gates, gradient-based 

methods will not suffice for many applications.  This also has implications for quantum computation and quantum 

information by implementation of quantum circuits.  These circuits form the basis for implementing various 

computations.  These circuits (quantum gates) are also discontinuous, so gradient-based methods are not suited for 

these applications. 

 

The proposed system leverages the benefits of both grid search and random search where their combination alleviates 

their corresponding limitations.  As such, the system no longer requires an explicit starting point, but implicitly deploys 

a plurality of randomly-selected starting points.  Because the system is constructed to solve the most general 

nonconvex optimization problem, this breakthrough approach does not require a priori knowledge of the problem 

structure nor does it require tuning of parameters. 

 

If the problem happens to be well-behaved, meaning the nonconvexity contains relatively few extrema, the likelihood 

of locating the global extremum is high.  However, in the case if high nonconvexity, with many extrema, the system 

may employ Monte Carlo methods to provide additional outcomes.  By collecting the results over many iterations, the 

outcomes may be sorted to observe the extremum among other extrema.  One immediate benefit is the system provides 

all the results which may be evaluated for cost/benefit analysis.  For example, a suboptimal result may be selected due 

to budgetary or other restrictions.  Another immediate benefit is the system provides the probability associated with 

the aggregate outcomes.  Knowing the probability of occurrence associated with local extrema and the global 

extremum supports trust in artificial intelligence application and sheds light on any potential black swans. 

 

Overview 

 

Referring to the flowchart of Figure 6, the system is started by computing the overall number of random variables.  

Generating random variables leads to an extremum computation and its corresponding coordinates.  At this point, the 

inner loop tolerance is checked. 

• If the inner loop tolerance condition is not met, the range of random variables is updated, making sure they lie 

within their original bounds, and new random variables are generated over this narrowed range, thus restarting 

the generation process. 

• If the inner loop tolerance condition is met, constraints are updated, and the outer loop tolerance is checked. 

o If the outer loop tolerance condition is not met, penalty parameters are increased, and the generation 

process is restarted. 

o If the outer loop tolerance condition is met, the process ends. 

Lastly, the system may employ Monte Carlo methods to collect information for further analysis. 
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Figure 6: System Flowchart 

 

 

Details 

 

Before embarking on the details, it is helpful to understand optimization problems are framed within the context of a 

minimization problem, recognizing a maximization problem is simply the negative of a minimization problem.  

Additionally, all equality constraints are set equal to zero and all inequality constraints will be set less than zero. 

 

The mathematical models of optimization include independent variables, constraints, and an objective function.  

Independent variables describe an allocation of resources represented by the model.  For example, the number of hours 

to operate a machine.  The system operates to find optimal values of these unknowns.  Constraints impose limits on 

the values the independent variables can assume.  For example, the output of a machine cannot be negative.  The 

objective function is a measurement based on the independent variables.  The system determines the independent 

variables such that the objective function is optimized.  For example, the cost of operating the machine may be 

minimized or the output of the machine may be maximized. 

 

The system requires identification of the objective function (𝑓), the inequality (𝑔) and/or equality (ℎ) constraints, and 

the lower and upper bounds for each independent variable (𝑥).  Furthermore, the system requires the convergence 

tolerance which impacts the precision of the result and defines the resolution of the random grid.  Specifying the 

tolerance determines the number of decimal places required for convergence.  For example, if the problem is related 

to the financial world, a tolerance of 0.01 is specified, meaning the solution should converge to the nearest cent.  The 

sensitivity of each independent variable on the objective function plays a role in the selection of the resolution.  While 

the resolution defines the number of independent variables to be placed across the hyperparameter grid, the 

independent variables are placed on this grid in a randomly-spaced fashion, as shown in Figure 7. 
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Figure 7: Random Placement of Independent Variables Across the Grid 

 

Referring to the flowchart of Figure 6, the overall number of random variables is computed by subtracting the lower 

bound from the upper bound (for each independent variable) and dividing the difference by the resolution.  The 

maximum from this set of results is the overall number of random variables used by the system. 

 

Next, random variables are generated for each independent variable based on their lower bound (𝐿𝐵) and upper bound 

(𝑈𝐵).  The inequality constraints (𝑔) and equality constraints (ℎ) are computed, appended to the objective function, 

and evaluated.  This is done for each of the overall number of random variables. 

 

There are several system implementations which append the constraints to the objective function.  One such method 

is through the exact multiplier penalty function.  [As an aside, the method of multipliers is used with (i) Newton’s 

method if the Hessian (a matrix of partial derivatives) is available, (ii) a quasi-Newton method if only gradients 

(derivatives) are available, or (iii) the conjugate gradient method.  This system uniquely combines the method of 

multipliers with the benefits of the grid search and random search avoiding the numerical difficulties associated with 

derivatives.]  The initial optimal Lagrange multiplier (𝑈) is updated from its negligibly small, but nonzero initial value, 

𝑈 = 𝑈 +max(2𝜇𝑔,−𝑈), where μ is a constraint penalty parameter.  Then, four terms are computed which will be 

subsequently appended to the objective function.  The first term is 𝜇(max⁡(𝑔 + 𝑈/2𝜇, 0))2.  The second term is 

𝑈2/4𝜇.  The third term is 𝜈ℎ, where 𝜈 is another penalty parameter.  The fourth term is 𝜇ℎ2.  The terms are appended 

to the objective function as follows, calling special attention to the minus sign on the second term. 

𝑓 + 𝜇(max⁡(𝑔 + 𝑈/2𝜇, 0))2 −
𝑈2

4𝜇
+ 𝜈ℎ + 𝜇ℎ2 

Note: 𝜇 is updated through multiplication, therefore select its initial value to be 1; whereas 𝜈 is updated through 

addition, so its initial value is set to 0. 

 

Returning to the set of repeated evaluations, the minimum and its corresponding set of independent variables are 

saved.  The current minimum value is compared with the previous minimum value.  For the first comparison, the 

initial minimum value is large by design.  Since the difference between the initially large minimum value and the 

current minimum value is large, the small tolerance is certainly exceeded.  Therefore, a second iteration is needed.  

This is the “Inner Loop Tolerance” decision block in shown in the flowchart of Figure 6 (above). 

 

 
Figure 8: Adaptive Placement of Random Independent Variables 

 

If the inner loop tolerance decision is not satisfied, a new range of random variables is centered on the current 

minimum, based on current coordinates and resolution, 𝐿𝐵 = 𝑥 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑈𝐵 = 𝑥 + 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.  Since this 

new range is centered on the location of the current minimum, and since the current minimum could lie near the lower 

bound or upper bound, the range is checked to be sure it lies above the initial lower or bound or below the initial upper 
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bound.  If it does not, the new bound (lower or upper) is reset to the initial bound value (lower or upper).  This iterative 

approach adaptively produces a finer search for a minimum within tolerance.  Figure 8 shows an example of how this 

iterative approach adapts to produce a finer search.  At this point, a set of new random variables are generated for each 

independent variable, based on their new lower and upper bounds, and the process is restarted. 

 

If, however, the inner loop tolerance decision is satisfied, the constraints are updated with the coordinates 

corresponding to the current minimum.  Furthermore, the constraint violation value is updated, which is simply the 

maximum of the absolute value of all equality constraints, max⁡(abs(ℎ)).  The constraint violation value is compared 

with the outer loop tolerance.  This is the “Outer Loop Tolerance” decision block in shown in the flowchart of Figure 

6 (above). 

 

If the outer loop tolerance decision is not satisfied, either (1) increase the penalty parameter (𝜇 = 10𝜇) or (2) increase 

the penalty parameter (𝜈 = 𝜈 + 2𝜇ℎ) and increase the optimal Lagrange multiplier (𝑈 = 𝑈 +max⁡(2𝜇𝑔,−𝑈)).  The 

either/or choice is determined by comparing the constraint violation value with an initial large comparison value.  If 

the constraint violation value exceeds the initial large comparison value, choose option (1), otherwise, select option 

(2).  If option (2) is selected, the initial large comparison value is updated by setting it to the current constraint violation 

value for the next iteration.  After selection of (1) or (2), a set of new random variables are generated for each 

independent variable, and the process is restarted. 

 

If, however, the outer loop tolerance decision is satisfied, the process ends, thus obtaining one solution from the 

system. 

 

 
Figure 9: Outcomes from Monte Carlo Methods 

 

Finally, the system may employ Monte Carlo methods which may provide additional outcomes.  By collecting the 

results over many iterations, possible outcomes may be sorted to observe the extremum among other extrema.  Figure 

9 shows an example of two possibilities: one outcome is a local minimum and the other is the global minimum.  Given 

the random placement of random independent variables across the grid, it is unlikely that the system would terminate 

on the local minimum.  Although unlikely, the probability of the system terminating at the local minimum is not zero.  

Therefore, the data may be examined to inspect the statistics associated with the possible outcomes.  Figure 10 shows 

a small probability associated with the local minimum outcome compared to the large probability associated with the 

global minimum outcome.  Thus, the system is stochastic in both the adaptive placement of random independent 

variables over iterations as well as in the application of Monte Carlo methods. 
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Figure 10: Distribution of Outcomes from Monte Carlo Methods 

 

Testing 

 

The system has been successfully tested with a suite of standard benchmarking problems (Sedlaczek and Eberhard, 

2005) including the Rosenbrock and Griewank functions.  (The Rosenbrock function contains a global minimum deep 

within a long narrow parabolic valley.  The Griewank function is a sinusoidal function with a parabolic envelope.)  

Practical nonlinear operations research testing included game theory, decision analysis, queueing theory, and 

inventory applications.  Additional successful testing was performed on naval aviation skill attainment (NAWCTSD) 

and naval manning models (CNATRA). 

 

USE CASE 

 

As a practical example, consider the process of aerospace vehicle system identification as applied to the estimation of 

the rolling moment aerodynamic parameter, 𝐶𝑙.  One artificial neural net approach uses 5 independent variables to 

determine 3 dependent variables.  After a lengthy and taxing exercise in numerical investigation (input/output scaling, 

initial network weights, number of hidden nodes, learning rate, momentum parameter, and slope factors of the 

sigmoidal activation functions) convergence is achieved after 2000 iterations.  The result is a complex, opaque, 

uninterpretable, unexplainable relationship between the inputs and outputs.  Also, if there are any changes to the inputs 

or outputs, the model must be retrained. 

 

 
Figure 11: System Architecture 

 

Figure 11 refers to an architecture for system identification problems using the proposed invention.  Let the aileron 

deflection be the known input (signal 2).  Let the roll moment aerodynamic parameter be the known output (signal 1).  

One skilled in aerodynamics will recognize the direct relationship between aileron deflection and rolling moment 

aerodynamics.  One skilled in machine/deep learning will recognize this as a regression form of supervised learning 

where known input/output data is used to train a model (in this case, determine coefficients of the mathematical model) 

for a response to new input data.  The difference between the computed output (signal 3) and the known output (signal 

1) is the error (signal 4).  Optimizing (minimizing) the error (signal 4) determines the coefficients of the mathematical 

functions.  Assuming the relationship between input and output is unknown, a generic mathematical model is used.  

The reason for a generic mathematical model is to demonstrate it’s possible to describe the relationship between 

aileron deflection and roll maneuver without having a priori knowledge regarding the aerodynamics.  Of course, one 

skilled in aerodynamics may implement a model describing the mathematics from aileron input to roll maneuver 

output.  The coefficients describe the model and are used to explain the relationship between the input (aileron 

deflection) and output (roll moment aerodynamic parameter).  Rather than using a ratio of 5/3 (output/input) as in the 
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artificial neural net case, only 1 is used for both input and output with the proposed invention, i.e., 40% less data is 

required to determine the relationship between input and output.  Furthermore, the results are achieved in 200 iterations 

– an order of magnitude less than required by the artificial neural net approach. 

 

While the model is still relatively complex, it is transparent, interpretable, and explainable.  Because of these attributes, 

this innovative technology is much more reliable, especially for flight safety certification.  Finally, the mathematical 

model can be subsequently exercised to explore extreme cases, e.g., letting variables go to zero and letting variables 

approach infinity.  Hence increasing confidence model deployment. 

 

Other use cases include applications to machine/deep learning, reinforcement learning, cryptography, and self-

organized complex systems. 

 
SUMMARY/CONCLUSION 

 

In short, the advantages are 

• The system is gradient-free, numerically stable, and allows for the inclusion of logic/quantum gates. 

• There is no need for a priori information to start the system with a known set of coordinates. 

• The system configuration can be established to have control over the precision of the search by selecting the 

resolution. 

• There is no need to follow any prescribed architectural philosophy. 

• By design, the system solves the most-general optimization problem. 

 

The system may be applied to prevalent problems of operations research and management sciences including game 

theory, decision analysis, queueing theory, inventory theory, transportation, and networking.  The system may also be 

applied to supervised (regression and classification) and unsupervised (clustering) machine learning architectures.  

The ability to handle probabilistic inputs, coupled with the inclusion of logic gate architecture, facilitates another 

application to quantum computing, e.g., quantum Fourier series and quantum cryptography. 

 

The system may be configured for real-time applications offering many advantages.  Of course, real-time requirements 

for guidance, navigation, and control processes are different than real-time requirements for e-commerce transactions.  

In either case, the system may be augmented such that known constraints (if any) could be built into the objective 

function.  Also, by applying an appropriate resolution, the system may be configured to execute in a deterministic 

time frame.  This is something worth exploring. 
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